Name:

Mrs. A CHITRA LEKHA

Qualification:

• M.Tech(Power System Control and Automation)

Experience:

Total Teaching Experience of 11 years from 2007- till date

Worked as Assistant Professor in Jayamukhi Institute of Technological Sciences from 2007 - 2010.

Had a six months experience in Ramappa Engineering College.

From 2012 working as Assistant Professor in Vaagdevi College of Engineering.

Area of Interest:

Smart Grid, Power Quality

Subjects Taught:

STLD,LDIC,EM-II,EM,Control Systems,CMP,PS-I,EC,UEE,

EM-III,SGP,PSOC,EHVAC,APSA,PSD,APSP

Projects guided:

UG projects

Title	Student Name	Year
A study project on	Y.Manaswith,B.Aravind,S.Saikiran,B.rahul	
silent Diesel Generator	goud,K.Vikram rathan veer,G.Srikanth	2017-2018
Simulation Analysis of	13641A0210	2016-2017
SVPWM Inverter Fed	13641A0230	
Induction Motor Drives	13641A0217	
	13641A0253	
A switched capacitor	11641A0252, 11641A0205, 11641A0227,	2015-2016
inverter using	11641A0249.	
series/parallel		
conversion with		
inductive load		
New breed of network	11641A0283, 11641A0267, 11641A0262,	2014-2015
tolerant voltae source	11641A0275,12645A0215.	
converter HVDC		
transmission system.		
A Novel loaded	11641A0262, 11641A0294, 11641A0290,	2013-2014
Resonant Converter for	11641A0272, 11645A0213.	
the application of DC-		
to-DC energy		
conversions.		

PG projects

Title	Student Name	Year
Ac Dynamic Load Control	M.Raju	2017-2018
From Solar Energy		
By Using Phase-In Position		
Control Technique		
Flexible Control Strategy for	P.Roja	2015-2016
Grid Connected Inverter	(14641D5322)	
Under Unbalanced Grid Fault		
without PLL		
Integration and Control of	V.Pradeep Kumar	2015-2016
Unified Power quality	(14641D5306)	
Conditioner in Distributed		
Generation Based Micro Grid		
System		
Efficient approaches for	SK.Rameez	2014-2015
modeling and simulation of	Rehmeth(12641D5313)	
photovoltaic power system	, , , ,	
Automatic re-closure of shunt	M.Suresh(13641D5304)	2013-2014
compensated transmission		
line		

- Workshops/Seminars/FDP's Attended:

 1. One week FDP on Challenges and advances in renewable energy sources.

 2. Two week FDP on Entrepreneurship Development.

 - 3. Micro Grid and Distributed Generation