

Autonomous Bollikunta, Warangal (Mandal), Warangal-506 005 (T.S),

DEPARTMENT OF CIVIL ENGINEERING

<u>VISION</u>

To empower the graduates with high technical competencies to meet proficient and societal challenges in the field of Civil Engineering and Technology.

MISSION

- To impart pioneering teaching and learning practice to the Civil Engineering graduates and educate them in the emerging technologies in Civil Engineering
- To promote quality education, research and consultancy services in area of Civil Engineering to fulfill the needs of industries and society.

Autonomous Bollikunta, Warangal (Mandal), Warangal-506 005 (T.S),

M. Tech – STRUCTURAL ENGINEERING

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs) of the M.Tech (Structural Engineering)

The Graduates of the programme will be able to:

- 1. Proficient in planning, analysis, design and execution of diverse projects with due consideration to issues concerning society and environment.
- 2. Adopt new innovative technology by continuously updating their knowledge through lifelong learning.
- 3. Analyze socio-industrial problems and present feasible solutions through critical thinking and research.
- 4. Continue professional development in this field or in related inter disciplinary fields with a background in structural engineering.

PROGRAMME OUTCOMES (POs) of the M.Tech (Structural Engineering)

The Graduates of the programme will be able to:

- 1. Acquire in-depth knowledge of Structural Engineering discipline with an ability to evaluate, analyse and synthesise existing and new knowledge, and integration of the same for enhancement of knowledge.
- 2. Create, select, learn and apply acceptable techniques, resources, and modern Structural Engineering tools to complex engineering activities with an understanding of the limitations.

Autonomous Bollikunta, Warangal (Mandal), Warangal-506 005 (T.S),

- 3. Understand the impact of the Structural Engineering solutions in societal and environmental contexts, and demonstrate the knowledge for sustainable development.
- 4. Design, integrate and administrate new structural problems using emerging technologies.
- 5. Understand about group dynamics, recognize opportunities and contribute positively to collaborative research in multidisciplinary aspects.

PROGRAMME SPECIFIC OUTCOMES (PSOs) of the M.Tech (Structural Engineering)

The Graduates of the programme will be able to:

- Expose advanced courses in Analysis and Design of structures as per the latest design codes, current national and international scenario on Structural Engineering.
- 2. Integrate and administrate solution for new structural problems using modern technology and literature.
- 3. Address the societal needs by interdisciplinary approach through advanced and allied courses.

Autonomous

Bollikunta, Warangal (Mandal), Warangal-506 005 (T.S),

COURSE OUTCOMES (Cos) - M.Tech – STRUCTURAL ENGINEERING

Course Outcome	Semester: I- Sem	Subject Name (Code): Theory of Elasticity (M18SE01)	No. of Hours : L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	apply elastic analysis to study the fracture mechanics				
2	apply linear elasticity in the design and analysis of structures such as beams, plates, shells and sandwich composites				
3		sticity to determine the response	of elastomer-based of	objects.	
4	analyze the stru	ctural sections subjected to torsic	on.		
5	understand vari	ous theories of failure and concep	pt of plasticity.		
Course Outcome	Semester: I- Sem	Subject Name (Code): Behaviour of Concrete Structures (M18SE02)	No. of Hours : L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Obtain Knowledge of the behavior of reinforced concrete structures and Identify reinforced concrete failure modes from crack patterns				
2	Understand the	behaviour of flexural members			
3	Determine bond length, lap splice and detailing requirements for reinforced concrete members				
4	Demonstrates the behaviour of short column under axial, uni-axial & bi- axial bending and slender columns				
5	Understand the	concept of Yield line theory			
Course Outcome	Semester: I- Sem	Subject Name (Code): Matrix Methods of Structural Analysis (M18SE12)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Distinguish between stable and unstable and statically determinate and indeterminate structures.				
2	Apply strain energy (Betti's law) for determinate and indeterminate structures				
3	Form the stiffness and loading matrices of an idealized structure, with a focus on building and bridge structures				
4	Analyze indeterminate beams, frames and trusses using displacement method and flexibility method				
5	Discuss the fundamental concepts and theories of Matrix Methods for analysis of skeletal structures such as beams, plane and space trusses, plane and space frames and grillage structures				

Course Outcome	Semester: I- Sem	Subject Name (Code): Stability of Structures (M18SE13)	No. of Hours L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Understand stability of static and dynamic equilibrium.				
2	Determine the buckling loads for simple columns and frames, have an understanding of the concept of effective length and its use in design				
3	Analyse the be	ams for lateral - torsional bucklir	ıg		
4	Differentiate how the tangent modulus and double modulus theories of inelastic buckling led to the column paradox, thereby preventing further difficulties for a general theory of structures.				
5	Apply advance	d numerical techniques to bucking	g analysis of structur	res.	
Course Outcome	Semester: I- Sem	Subject Name (Code): Advanced Concrete Technology (M18SE14)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Develop an advanced knowledge of the mechanical performance of cement-based materials Use advanced laboratory techniques to characterize cement-based materials and determine the				
2	properties of concrete ingredients i.e. cement, sand, coarse aggregate by conducting different tests.				
3	Understand the mix design and engineering properties of special concretes such as high- performance concrete, self-compacting concrete, fibre reinforced concrete, etc.				
4	Understand the	safety steps involved in the desig	gn of form work and	false work	
5	Design high gra	ade concrete and study the parameter	eters affecting its per	formance	
Course Outcome	Semester: I- Sem	Subject Name (Code): Forensic Engineering and Rehabilitation of structures (M18SE15)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Learn various distress and damages to concrete and masonry structures.				
2	Understand NDT techniques for condition assessment of structures for identifying damages in structures.				
3	Describe and apply the importance of quality control in concrete construction and significance of protection and maintenance of structures.				
4	Identify repairs and remedies to be adopted for rehabilitation of buildings.				
5	Asses existing conditions of buildings.				
Course Outcome	Semester: I- Sem	Subject Name (Code): Prefabricated Structures (M18SE16)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3	

Autonomous

1	Gain Knowledge on basic concepts of prefabrication, types and its systems			
2	Obtain knowledge on handling and erection stresses in prefabrication and adopt the design Principles for prefabricated structures			
3	Get knowledge on production, transportation and erection of prefabricated structures			
4	To have a detailed knowledge in designing and detailing of various prefabricated units			
5	Identify suitable prefabricated components for specific use			
Course Outcome	Semester: I- Sem	Subject Name (Code): Theory of Plates (M18SE17)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3
1	Understand the	behavior of cylindrical bending	in plates	
2	Analyze plates under different boundary connections by various classical methods, special and approximate methods			
3	Perform cylindrical bending of long rectangular plates, pure bending of rectangular and circular plates, and small deflection theories for various boundary conditions.			
4	Understand the behaviour of orthotropic plates, grids and folded plates.			
5	Enrich research capability in plates and apply the theory of plates in engineering designs.			
Course Outcome	Semester: I- Sem	Subject Name (Code): Structural Design Laboratory (M18SE03)	No. of Hours: L: 0 T: 0 P: 0 Total: 4	Credits: 3
1	Create a progra	m using arrays and functions for	matrix manipulation	
2	Create a program to draw bending moment and shear force diagrams			
3	Learn program	to design slab, beams, columns a	nd footings	
4	Learn program	to analyze truss, multi storey fran	me and bridge deck s	lab
Course Outcome	Semester: I- Sem	Subject Name (Code): Advanced Concrete Laboratory (M18SE04)	No. of Hours: L: 0 T: 0 P: 4 Total: 4	Credits: 2
1	Test Fineness, Specific Gravity, Setting Time, Soundness and Compressive Strength of Cement			
2	-	Test physical properties of Coarse Aggregate and Fine Aggregate		
3	Test Workability of Fresh Concrete and Compressive strength, Split Tensile Strength of Hardened Concrete			
4	Demonstrate ability to make selection of materials based on their properties, behaviour and intended use in design and construction			

Autonomous

Course Outcome	Semester: II-Sem	Subject Name (Code): Finite Element Methods (M18SE05)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Understand the fundamental concepts of the Finite Element Method (FEM).				
2	Make use of shape function and interpolation function to study structural behavior.				
3	Apply linear and c	uadratic elements in the finite element	analysis of various types	of structures.	
4	Gain knowledge o	n basic concept on non linear analysis			
5		nite element solutions to structural, the ills needed to effectively evaluate finite			
Course Outcome	Semester: II-Sem	Subject Name (Code): Structural Dynamics (M18SE06)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Apply the fundam	ental concepts and definitions used in st	ructural dynamics.		
2	to compare these t	ynamic properties of a structure such as o the properties of the load.	-	mode shapes and	
3		ral frequency of a system using equilibr			
4	Determine the effect of viscous damping on the response of a freely vibrating system.				
5	Evaluate forces and design earthquake resistant structure.				
Course Outcome	Semester: II-Sem	Subject Name (Code): Experimental Techniques (M18SE18)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Apply experimental techniques using strain gauges to solve field problems.				
2	Gain knowledge on characteristics of structural vibrations and wind flow.				
3	Measure distress i	n the structures using various electronic	equipment.		
4	Obtain knowledge	on advanced NDT methods in accessin	g the load testing of strue	ctures.	
5	Use various vibrat	ion measuring instruments and analyze	the structures using digit	al display unit.	
Course Outcome	Semester: II-Sem	Subject Name (Code): Analysis of Foundations (M18SE19)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Obtain knowledge	on types of deep foundation and factor	s governing on it.	1	
2	Analyze the piles	with static formulae			
3	Gain knowledge on piles placed in group				
4	Design appropriate foundation systems based on ground-investigation data and be able to select correct soil parameters for the designs				
5	Appraise foundation design concepts in the choice of appropriate foundation and design simple foundations.				
Course Outcome	Semester: II-Sem	Subject Name (Code): Neo Construction Materials (M18SE20)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3	

Autonomous

1	Demonstrates the knowledge on light weight aggregate concrete and its application			
2	Gain knowledge on high strength and high performance concrete methods			
3	Know behaviour of special concrete and its effects oon properties of concrete			
4	Study about corrosion and its prevention in reinforced concrete			
5	Understand the use of advanced materials in construction projects			
Course Outcome	Semester: II-Sem	Subject Name (Code): Offshore Structures (M18SE21)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3
1	Calculate wave forces on fixed and floating structures			
2	Illustrates differen	t types of foundations for offshore struc	tures	
3	Gain Knowledge	on static and dynamic analysis for found	ations of offshore structu	ures
4	Conduct analysis	of floating platform and Interpret transfe	er functions on the basis	of a thorough
т		he governing physical effects	antine and hetters are	
5	structures	ntal global stability checks of various flo	baung and bottom suppor	neu orisnore
Course Outcome	Semester: II-Sem	Subject Name (Code): Tall Buildings (M18SE22)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3
1	Study the behavio	r of different types of tall structural syst	ems	1
2	Analyze tall structures for vertical and lateral loads with various methods and approaches			
3	Gain the knowled	ge to select appropriate type of tall build	ling depending on physic	al factors
4	Understand approx	ximate analysis, accurate analysis and re	eduction techniques	
5	Acquisition of ski	lls and competences for the analysis and	design of Tall Buildings	8
Course Outcome	Semester: II-Sem	Subject Name (Code): Design of Prestressed Concrete Structures (M18SE23)	No. of Hours: L: 3 T: 0 P: 0 Total: 3	Credits: 3
1	To understand the principles of pre-stressing, materials of pre-stressing, different systems of prestressing, structural behaviour, advantages, losses of pre-stress, deflection of pre-stressed members.			
2	Analyze and design prestressed flexure members and horizontal and vertical shear in prestressed members			
3	Study the behaviour of composite sections under prestressing			
4	Realize the importance of prestessing the long span structures and heavily loaded members			
5	Develop skills in	planning, analysis and design of prestres	sed concrete beams, and	slabs.
Course Outcome	Semester: II-Sem	Subject Name (Code): Advanced Computing Laboratory (M18SE07)	No. of Hours: L: 0 T: 0 P: 4 Total: 4	Credits: 2
1	Gain knowledge about Modelling, analysis and designing of RCC elements using FEM tool.			

Autonomous

2	Understand to design pre-stressed concrete elements.				
3	Able to analyze steel member and bridge structure using FEM analysis.				
4	Gain knowledge about response of dynamic analysis of structure				
5	Able to analyze retaining wall and water storage structures				
Course Outcome	Semester: II-Sem	Subject Name (Code): Numerical Analysis Laboratory (M18SE08)	No. of Hours: L: 0 T: 0 P: 4 Total: 4	Credits: 2	
1	Obtain Roots of n	Detain Roots of non-linear equations by Bisection method and Newton's method.			
2	Perform calculation Iteration/ Gauss -	ons on system of Linear Equations using Jorden Method	g Gauss - Elimination/ Ga	auss - Seidal	
3	Integrate Numeric	cally Using Trapezoidal and Simpson's	Rules		
4	Calculate Numeri Method	cal Solution of Ordinary Differential Eq	uations by Euler's Metho	od, Runge-Kutta	
Course Outcome	Semester: II-Sem	Subject Name (Code): English for Research Paper Writing (M18AC01)	No. of Hours: L: 2 T: 0 P: 0 Total: 2	Credits: 2	
1	The student will be able to understand the nuances of research writing				
2	share their writing				
3		be able to publish a paper using the requi			
4		be able to work on citations and ably pla		-	
5	The student will b presenting the res	be able to avoid plagiarism and be able to earch work	o develop her own writin	g skills in	
Course Outcome	Semester: III-Sem	Subject Name (Code): Design of Steel Concrete Composite Structures (M18SE24)	No. of Hours : L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Design of membe	rs subjected to axial and lateral loads	II.		
2	Design the connect	ction for composite members			
3	Design tension an	d compression members			
4	Understand the co	oncept of steel-concrete composite const	ruction		
5	Get introduced to composite construction and composite behaviour of steel concrete composite structures				
Course Outcome	Semester: III-Sem	Subject Name (Code): Underwater Construction (M18SE25)	No. of Hours : L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Understand problems in site preparation, drainage and shoring during excavation.				
2	Understand the concept of stability of slopes in excavation.				
3	Perform analysis of offshore platform on the basis of a thorough understanding of the governing physical effects.				

Autonomous

4	Make use of underwater tunnelling techniques in practical applications.				
5	Obtain knowledge on underwater foundation for structures.				
Course Outcome	Semester: III-Sem	Subject Name (Code): Earthquake Analysis and Design of Structures (M18SE26)	No. of Hours : L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Understand the basics of earthquake engineering and how they influence the structural design.				
2	Predict the sources of earthquakes understanding seismology and conceptually design the buildings				
3	Apply basic methods employed for analysis of civil engineering problems involving dynamics and earthquake.				
4	To access seismic performance of non-structural components and structural components and identify effective measures to mitigate potential damage.				
5	Understand the theoretical and practical aspects of earthquake engineering along with the planning and design aspects.				
Course Outcome	Semester: III-Sem	Subject Name (Code): Project Management (M18MB30)	No. of Hours : L: 3 T: 0 P: 0 Total: 3	Credits: 3	
1	Importance of Project Management				
2	Project Planning, Execution and implementation				
3	Significance of teams in projects				
4	Evaluate the project techniques				
5	Understand the organizational behaviour of project management				