

VAAGDEVI COLLEGE OF ENGINEERING

Autonomous

Bollikunta, Khila Warangal (Mandal) Warangal Urban -506005(T.S), www.vaagdevi.edu.in

DEPARTMENT OF PHYSICS

BOARD OF STUDIES MEETING (2022-2023)

Minutes of meeting of Board of Studies in Physics Department held on 16/11/2022 at 2:45 pm

DEPARTMENT OF PHYSICS				
S. No	Name with Details	Designation	Phone & Email	Sign.
1	Dr. S. Kalahasthi Head, Dept. of Physics VCE, Warangal.	Chairperson	9948019193 skhasti@yahoo.co.in	Dueln's
*2	Dr. K. Vijaya Kumar Prof. of Physics, 4 PRINCE Go-Ordinator, DUAAC JNTUH, Kukatpally UCER	Member (Subject Expert)	9000203797 kvkumar@jntuh.ac.in	Sum
13ASS	Dr. G. Padmaja Prof. of Physics Kakatiya University Bos Physics, K. U	Member (Subject Expert)	7702227986 gpadmaja06@yahoo.com	el. Podr
4	Mr. M. Sridhar Rao Dept. of Physics VCE, Warangal.	Member	9440948113 sridharraomattapally@gmail .com	SAN
5	Dr. D. Gnyaneshwar Dept. of Physics VCE, Warangal.	Member	9959983304 gnany333@gmail.com	Grand

The following decisions are taken:

- > Approved the syllabus of following subjects offered for B. Tech. I Yr. (R 22 Regulations).
- > Applied Physics
- Applied Physics Laboratory

[Dr.S.Kalahasth

chairpersor

VAAGDEVI COLLEGE OF ENGINEERING AUTONOMOUS

Bollikunta, Warangal, (T.S), 506005

APPLIED PHYSICS

Sub code: B22PH01

LTPC 3 1 0 4

Course Objectives: The objectives of this course for the student are to:

- Understand the basic principles of quantum physics and band theory of solids.
- Understand the underlying mechanism involved in construction and working principles of various semiconductor devices.
- Study the fundamental concepts related to the dielectric, magnetic and energy materials.
- Identify the importance of nanoscale, quantum confinement and various fabrications techniques.
- Study the characteristics of lasers and optical fibres.

UNIT - I: OUANTUM PHYSICS AND SOLIDS

QUANTUM MECHANICS: Introduction To Quantum Physics - Blackbody Radiation - Stefan-Boltzmann's Law, Wein's And Rayleigh-Jean's Law, Planck's Radiation Law (qualitative) - Photoelectric Effect- waves and particles - de Broglie hypothesis - properties of matter waves-Davisson And Germer Experiment - Heisenberg Uncertainty Principle - Born Interpretation Of The Wave Function - Time Independent Schrodinger Wave Equation - Particle in One Dimensional Potential Box - SOLIDS: Free Electron Theory (Drude & Lorentz, Sommerfeld) - Fermi-Dirac Distribution - Bloch's Theorem - Kronig-Penney Model (qualitative) - E-K Diagram- Effective Mass Of electron- Origin Of Energy Bands- Classification Of Solids.

UNIT - II: SEMICONDUCTORS AND DEVICES

Intrinsic And Extrinsic Semiconductors – Hall Effect - Direct And Indirect Band Gap Semiconductors - Construction, Principle, Operation And Characteristics Of P-N Junction Diode, Zener Diode And Bipolar Junction Transistor (BJT)–LED, PIN Diode, Avalanche Photo Diode (APD) And Solar Cells, Their Structure, Materials, Working Principle And Characteristics.

UNIT - III: DIELECTRIC, MAGNETIC AND ENERGY MATERIALS

<u>DIELECTRIC MATERIALS</u>: Basic Definitions- Types of Polarizations (Qualitative) - Ferroelectric, Piezoelectric, and Pyroelectric Materials - Applications - Liquid Crystal Displays (LCD) And Crystal Oscillators. <u>MAGNETIC MATERIALS</u>: Hysteresis - Soft And Hard Magnetic Materials - Magnetostriction, Magnetoresistance - Applications - Bubble Memory Devices, Magnetic Field Sensors And Multi-Ferroics. <u>ENERGY MATERIALS</u>: Conductivity of Liquid and Solid Electrolytes- Superionic Conductors - Materials and electrolytes for Super Capacitors - Rechargeable Ion Batteries, Solid Fuel Cells.

UNIT - IV: NANOTECHNOLOGY

Nanoscale, Quantum Confinement, Surface to Volume Ratio, Bottom-Up Fabrication: Sol-Gel, Precipitation, Combustion Methods – Top-Down Fabrication: Ball Milling - Physical Vapor Deposition (PVD) - Chemical Vapor Deposition (CVD) - Characterization Techniques - XRD, SEM &TEM -Applications of Nano materials.

UNIT - V: LASER AND FIBER OPTICS

<u>LASERS</u>: Laser Beam Characteristics-Three Quantum Processes-Einstein Coefficients And Their Relations- Lasing Action - Pumping Methods- Ruby Laser, He-Ne Laser, Nd: YAG Laser-Semiconductor Laser-Applications Of Laser. <u>FIBER OPTICS</u>: Introduction To Optical Fiber-Advantages Of Optical Fibers - Total Internal Reflection construction of Optical Fiber - Acceptance Angle - Numerical Aperture- Classification Of Optical Fibers losses in Optical Fiber - Optical Fiber For Communication System - Applications.

1) Whelen 2) Queen 354. Podra 36 5) Games

Course Outcomes: At the end of the course the student will be able to:

- Understand physical world from fundamental point of view by the concepts of Quantum
- Mechanics and visualize the difference between conductor, semiconductor, and an insulator by classification of solids.
- Identify the role of semiconductor devices in science and engineering Applications.
- Explore the fundamental properties of dielectric, magnetic materials and energy for their applications.
- Appreciate the features and applications of Nanomaterials.
- Understand various aspects of Lasers and Optical fibre and their applications in diverse fields.

TEXT BOOKS:

- 1. M. N. Avadhanulu, P.G. Kshirsagar& TVS Arun Murthy" A Text book of Engineering Physics"-S. Chand Publications, 11th Edition 2019.
- 2. Engineering Physics by Shatendra Sharma and Jyotsna Sharma, Pearson Publication, 2019
- 3. Semiconductor Physics and Devices- Basic Principle Donald A, Neamen, Mc Graw Hill,4thEdition,2021.
- 4. B.K. Pandey and S. Chaturvedi, Engineering Physics, Cengage Learning, 2ndEdition,2022.
- 5. Essentials of Nanoscience & Nanotechnology by Narasimha Reddy Katta, Typical Creatives NANO DIGEST, 1st Edition, 2021.

REFERENCE BOOKS:

- Quantum Physics, H.C. Verma, TBS Publication, 2nd Edition 2012.
- 2. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley &Sons, 11th Edition, 2018.
- 3. Introduction to Solid State Physics, Charles Kittel, Wiley Eastern, 2019.
- 4. Elementary Solid State Physics, S.L. Gupta and V. Kumar, PragathiPrakashan, 2019.
- 5. A.K. Bhandhopadhya Nano Materials, New Age International, 1stEdition, 2007.
- 6. Energy Materials a Short Introduction to Functional Materials for Energy Conversion and Storage Aliaksandr S. Bandarenka, CRC Press Taylor & Francis Group
- 7. Energy Materials, Taylor & Francis Group, 1st Edition

1. Dr. S. Kalahasthi

2. Dr. K. Vijaya Kumar

3. Dr. G. Padmaja

4 Mr. M. Sridhar Rao

Grand! 5. Dr. D. Gnyaneshwar

VAAGDEVI COLLEGE OF ENGINEERING AUTONOMOUS

Bollikunta, Warangal, (T.S), 506005

APPLIED PHYSICS LABORATORY

Sub Code: B22PH02

LTPC 0031.5

Course Objectives: The objectives of this course for the student to

- 1. Capable of handling instruments related to the Hall effect and photoelectric effect experiments and their measurements.
- Understand the characteristics of various devices such as PN junction diode, Zener diode, BJT, LED, solar cell, lasers and optical fibre and measurement of energy gap and resistivity of semiconductor materials.
- 3. Able to measure the characteristics of dielectric constant of a given material.
- 4. Study the behavior of B-H curve of ferromagnetic materials.
- 5. Able to measure the time Constant of RC Circuit.

Course Outcomes: The students will be able to:

- 1. Know the determination of the Planck's constant using Photo electric effect and identify the material whether it is n-type or p-type by Hall experiment.
- 2. Appreciate quantum physics in semiconductor devices and optoelectronics.
- 3. Gain the knowledge of applications of dielectric constant.
- 4. Understand the variation of magnetic field and behavior of hysteresis curve.
- 5. Gain the knowledge of decay of chargeand determine time constant of RC circuit

LIST OF EXPERIMENTS:

- 1. Determination of work function and Planck's constant using photoelectric effect.
- 2. Determination of Hall co-efficient and carrier concentration of a given semiconductor.
- 3. Characteristics of series and parallel LCR circuits.
- 4. V-I characteristics of a p-n junction diode and Zener diode.
- 5. Input and output characteristics of BJT (CE, CB & CC configurations).
- 6. a) V-I and L-I characteristics of light emitting diode (LED)
 - b) V-I Characteristics of solar cell
- 7. Determination of Energy gap of a semiconductor.
- 8. Determination of the resistivity of semiconductor by two probe method.
- 9. Study B-H curve of a magnetic material.
- 10. Determination of dielectric constant of a given material.
- 11. a) Determination of the beam divergence of the given LASER beam.
 - b) Determination of Acceptance Angle and Numerical Aperture of an optical fiber.
- 12. Study of Decay Charge and Determination of Time Constant of RC Circuit

Note: Any 8 experiments are to be performed.

REFERENCE BOOK:

1. S. Balasubramanian, M.N. Srinivasan "A Text book of Practical Physics" S Chand Publishers, 2017.

1. Dr. S. Kalahasthi

2. Dr. K. Vijaya Kumar

3. Dr. G. Padmaja

4. Mr. M. Sridhar Rao

5. Dr. D. Gnyaneshwar