

SOLIDITY

Development Tools Frameworks&

Solidity language
• Solidity is a domain-specific language of choice

for programming contracts in Ethereum.

• There are, however, other languages that can be
used, such as Serpent, Mutan, and LLL (Low-level
Lisp-like Language) but Solidity is the most
popular at the time of writing this. Its syntax is
closer to both JavaScript and C.

• It is a statically typed language, which means that
variable type checking in Solidity is carried out at
compile time.

• Solidity is also called a contract-oriented
language. In Solidity, contracts are equivalent to
the concept of classes in other object-oriented
programming languages.

Data Types

Value-type variables store
their own data.

• Boolean
• Integers
• Address
• Literals

• Integer literals
• String literals
• Hexadecimal

literals
• Enums
• Function types

• Internal
• External

&Value types Reference types

Reference type variables
store the location of the
data. They don’t share the
data directly. With the
help of reference type,
two different variables
can refer to the same
location where any
change in one variable can
affect the other one.

• Arrays
• Structs
• Data location
• Mappings

Boolean
• This data type has two possible values, true or false

Example:

This statement assigns the value true to v.

Value Types

Integers
• This data type represents integers. The following table

shows various keywords used to declare integer data types:

Keyword Types Details

Signed
integer

to , which means that
keywords are available from up to

in increments of 8, for
example: .

Unsigned
integer

, ... to ,
unsigned integer from 8 bits to 256 bits.
The usage is dependent on the
requirements that how many bits are
required to be stored in the variable

Example :

Note: These types can also be declared with the constant keyword

• This data type holds a 160-bit long (20 byte) value.

• This type has several members that can be used to interact with and query the contracts.

Address

• Balance: The balance member returns the balance of the address in Wei.

• Send: This member is used to send an amount of ether to an address (Ethereum's 160-

bit address) and returns true or false depending on the result of the transaction

Example

• Call functions: The and calls are provided in order to

interact with functions that do not have ABI. These functions should be used with caution

as they are not safe to use due to the impact on type safety and security of the contracts.

• Array value types (fixed size and dynamically sized byte arrays): Solidity has fixed

size and dynamically sized byte arrays. Fixed size keywords range from to

, whereas dynamically sized keywords include and . The

keyword is used for raw byte data and is used for strings encoded in UTF-8. As

these arrays are returned by the value, calling them will incur gas cost. is a

member of array value types and returns the length of the byte array.

Example :

static (fixed size) array

dynamically sized array

Get length of trades

Literals
• These used to represent a fixed value.

Integer literals :

• Integer literals are a sequence of decimal numbers in the

range of 0-9.

Example

String literals :

• String literals specify a set of characters written with

double or single quotes.

Example

Hexadecimal literals :

• Hexadecimal literals are prefixed with the keyword hex

and specified within double or single quotation marks.

Example

Enums
• This allows the creation of user-defined types.

Example

• Explicit conversion to and from all integer

types is allowed with enums.

Reference types

• Arrays represent a contiguous set of elements of the same size and

type laid out at a memory location.

• The concept is the same as any other programming language. Arrays

have two members named and

Arrays

Structs
• This data type represents integers. The following table

shows various keywords used to declare integer data types:

• Data location specifies where a particular complex data type will be stored. Depending

on the default or annotation specified, the location can be storage or memory. This is

applicable to arrays and structs and can be specified using the or

keywords.

• As copying between memory and storage can be quite expensive, specifying a location

can be helpful to control the gas expenditure at times. Calldata is another memory

location that is used to store function arguments.

• Parameters of external functions use calldata memory. By default, parameters of

functions are stored in memory, whereas all other local variables make use of storage.

State variables, on the other hand, are required to use storage.

Data location

Mappings
• Mappings are used for a key to value mapping. This

is a way to associate a value with a key. All values

in this map are already initialized with all zeroes,

• This example shows that offers is declared as a mapping.

Another example makes this clearer:

• This is basically a dictionary or a hash table

where string values are mapped to integer

values. The mapping named has string

mapped to value 10

Global variables

• Solidity provides a number of global variables that are always available in

the global namespace.

• These variables provide information about blocks and transactions.

• Additionally, cryptographic functions and address related variables are

available as well.

• A subset of available functions and variables is shown as follows:

// This function is used to compute the Keccak-256 hash of the argument provided

to the function:

// This function returns the associated address of the public key from the elliptic curve

signature:

// This returns the current block number.

Control structures
• Control structures available in solidity language are

and

. They work exactly the same as other languages such

as C-language or JavaScript.

Control
structures

Events

• Events in Solidity can be used to log certain events in EVM logs.

• These are quite useful when external interfaces are required to be notified

of any change or event in the contract.

• These logs are stored on the blockchain in transaction logs. Logs cannot

be accessed from the contracts but are used as a mechanism to notify

change of state or the occurrence of an event (meeting a condition) in the

contract.

Inheritance
• Inheritance is supported in Solidity. The is keyword is used to

derive a contract from another contract. In the following

example, is derived from the

contract. The derived contract has access to all non-private

members of the parent contract

Libraries
• Libraries are deployed only once at a specific address and their

code is called via or opcode of the

EVM. The key idea behind libraries is code reusability.

• They are similar to contracts and act as base contracts to the

calling contracts. A library can be declared as shown in the

following example

• This library can then be called in the contract, as shown

here. First, it needs to be imported and then it can be

used anywhere in the code.

• Functions in Solidity are modules of code that are

associated with a contract. Functions are declared with a

name, optional parameters, access modifier, optional

constant keyword, and optional return type.

How to define a function:

Functions

• Input parameters of a function are

declared in the form of <data type>

<parameter name>

Input parameters of a
function

• Output parameters of a function

are declared in the form of <data

type> <parameter name>

Output parameters of a
function

Ch.Aravind

HYPERLEDGER

• Hyperledger is not a blockchain, but a project that was
initiated by the Linux Foundation in December 2015 to
advance blockchain technology.

• This project is a collaborative effort by its members to build an
open source distributed ledger framework that can be used to
develop and implement cross-industry blockchain applications
and systems.

• The principal focus is to create and run platforms that support
global business transactions.

• The project also focuses on improving the reliability and
performance of blockchain systems.

PROJECTS UNDER HYPERLEDGER

Blockchain projects
Relevant tools or
modules that support
these blockchains

There are two categories of projects under Hyperledger.

• Hyperledger Fabric
• Hyperledger Sawtooth Lake
• Hyperledger Iroha
• Hyperledger Burrow
• Hyperledger Indy

• Hyperledger Cello
• Hyperledger Composer
• Hyperledger Explorer
• Hyperledger Quilt

• The fabric is a blockchain project
that was proposed by IBM and
DAH (Digital Asset Holdings)

• This blockchain framework
implementation is intended to
provide a foundation for the
development of blockchain
solutions with a modular
architecture.

• The Sawtooth Lake is a blockchain project
proposed by Intel in April 2016 with some key
innovations focusing on the decoupling of
ledgers from transactions, flexible usage across
multiple business areas using transaction
families, and pluggable consensus.

• Iroha was contributed by Soramitsu, Hitachi, NTT
Data, and Colu in September 2016. Iroha is aiming
to build a library of reusable components that
users can choose to run on their own Hyperledger-
based distributed ledgers.

• This project is currently in the incubation state.
Hyperledger Burrow was contributed by Monax,
who develop blockchain development and
deployment platforms for business.

• Hyperledger Burrow introduces a modular
blockchain platform and an Ethereum Virtual
Machine (EVM) based smart contract execution
environment.

• This project is under incubation
under Hyperledger. Indy is a
distributed ledger developed for
building a decentralized identity.

• It provides tools, utility libraries, and
modules which can be used to build
blockchain based digital identities

• The aim behind Cello is to allow easy
deployment of blockchains. This will
provide an ability to allow "as a service"
deployments of blockchain service.
Currently, this project is in the
incubation stage.

• This project aims to build a
blockchain explorer for
Hyperledger Fabric that can be
used to view and query the
transactions, blocks, and
associated data from the
blockchain.

• It also provides network
information and the ability to
interact with chain code.

• This utility makes the development
of blockchain solutions easier by
allowing business processes to be
described in a business language,
while abstracting away the low-
level smart contract development
details. • This utility implements the Interledger

protocol, which facilitates
interoperability across different
distributed and non-distributed ledger
networks.

HYPERLEDGER AS A PROTOCOL

• Hyperledger is aiming to build new blockchain platforms that are driven by
industry use cases.

• As there have been many contributions made to the Hyperledger project by the
community, Hyperledger blockchain platform is evolving into a protocol for
business transactions. Hyperledger is also evolving into a specification that can be
used as a reference to build blockchain platforms as compared to earlier
blockchain solutions that address only a specific type of industry or requirement.

• a reference architecture is presented that has been published by the Hyperledger
project.

THE REFERENCE ARCHITECTURE

• Identity that provides authorization, identification, and authentication services under
membership services.

• Policy component, which provides policy services.

• Ledger and transactions, which consists of the distributed ledger, ordering service,
network protocols, and endorsement and validation services. This ledger is
updateable only via consensus among the participants of the blockchain network.

• Smart contracts layer, which provides chaincode services in Hyperledger and makes
use of secure container technology to host smart contracts. We will see all these in
more detail in the Hyperledger Fabric section shortly.

The modular
approach

Privacy and
confidentiality

Scalability

Deterministic
transactions

Identity

Auditability

Interoperability

Portability

Rich
data

queries

REQUIREMENTS
AND

DESIGN GOALS
OF

HYPERLEDGER FABRIC

Fabric

• Fabric can be defined as a collection of components
providing a foundation layer that can be used to deliver
a blockchain network.

• There are various types and capabilities of a fabric
network, but all fabrics share common attributes such
as immutability and are consensus-driven.

• The fabric is the contribution made initially by IBM and Digital Assets Holding to
the Hyperledger project. This contribution aims to enable a modular, open, and
flexible approach towards building blockchain networks.

• Various functions in the fabric are pluggable, and it also allows the use of any
language to develop smart contracts. This functionality is possible because it is
based on container technology (Docker), which can host any language

• Chaincode is sandboxed in a secure container, which includes a secure operating
system, chaincode language, runtime environment, and SDKs for Go, Java, and
Node.js.

• Transactions in the fabric are private, confidential, and anonymous for general
users, but they can still be traced and linked to the users by authorized auditors.

• As a permissioned network, all participants are required to be registered with the
membership services to access the blockchain network

Membership services

• User identity verification
• User registration
• Assign appropriate permissions to the users depending on

their roles

• Membership services make use of a certificate authority (Fabric CA) in order to support identity
management and authorization operations.

• Fabric CA issues enrollment certificates (E-Certs), which are produced by enrollment certificate
authority (E-CA)

Blockchain services

Consensus services:

• A consensus service is responsible for providing the interface to the consensus mechanism.

• Consensus in Hyperledger V1 is implemented as a peer called orderer, which is responsible for
ordering the transactions in sequence into a block. Orderer does not hold smart contracts or
ledgers.

• There are two types of ordering services available in Hyperledger Fabric:

• SOLO: This is a basic ordering service intended to be used for development and testing
purposes.

• Kafka: This is an implementation of Apache Kafka, which provides ordering service. It should
be noted that currently Kafka only provides crash fault tolerance but does not provide
byzantine fault tolerance. This is acceptable in a permissioned network where chances of
malicious actors are almost none.

Distributed ledger

• Blockchain and world state are two main elements of the distributed ledger. Blockchain is simply a
cryptographically linked list of blocks and world state is a key-value database.

• These transactions contain chaincode, which runs transactions that can result in updating the world
state. Each node saves the world state on disk in LevelDB or CouchDB depending on the
implementation.

• Block Header consists of three fields, namely Number, Previous hash,
and Data hash.

• Transaction is made up of multiple fields such as transaction type,
version, timestamp, channel ID, transaction ID, epoch, payload visibility,
chaincode path, chaincode name, chaincode version, creator identity,
signature, chaincode type, input, timeout, endorser identities and
signatures, proposal hash, chaincode events, response status,
namespace, read set, write set, start key, end key, list of read, and Merkle
tree query summary.

• Block Metadata consists of creator identity, relevant signatures, last
configuration block number, flag for each transaction included in the
block, and last offset persisted (kafka).

BLOCK HEADER

TRANSACTION

BLOCK METADATA

The peer to peer protocol

• The P2P protocol in the Hyperledger Fabric is built using google RPC (gRPC). It uses protocol buffers to
define the structure of the messages.

• There are four main types of messages in Hyperledger Fabric:

• Discovery
• Transaction
• Synchronization
• Consensus

• Discovery messages are exchanged between nodes when starting up in order to discover other
peers on the network.

• Transaction messages are used to deploy, invoke, and query transactions.

• Consensus messages are exchanged during consensus.

• Synchronization messages are passed between nodes to synchronize and keep the blockchain
updated on all nodes.

Ledger storage

• In order to save the state of the ledger, by default, LevelDB is used which is available at each peer.
An alternative is to use CouchDB which provides the ability to run rich queries.

Chaincode services

• These services allow the creation of secure containers that are
used to execute the chaincode.

• Secure container: Chaincode is deployed in Docker containers
that provide a locked down sandboxed environment for smart
contract execution. Currently, Golang is supported as the main
smart contract language, but any other mainstream languages
can be added and enabled if required.

• Secure registry: This provides a record of all images containing
smart contracts.

Components of the fabric

• There are various components that can be part of the Hyperledger Fabric blockchain.

• These components include but are not limited to the ledger, chaincode, consensus mechanism,
access control, events, system monitoring and management, wallets, and system integration
components.

• Peers participate in maintaining the state of the distributed ledger. They also hold a local copy of
the distributed ledger.

• Peers communicate via gossip protocol.

• There are three types of peers in the Hyperledger Fabric network:

• Endorsing peers or endorsers which simulate the transaction execution and generate a read-
write set. Read is a simulation of transaction's reading of data from the ledger and write is the
set of updates that would be made to the ledger if and when the transaction is executed and
committed to the ledger. Endorses execute and endorse transactions. It should be noted that
an endorser is also a committer too. Endorsement policies are implemented with chaincode
and specify the rules for transaction endorsement.

• Committing peers or committers which receives transaction endorsed by endorsers, verify
them and then update the ledger with the read-write set. A committer verifies the read-write
set generated by the endorsers along with transaction validation.

• Submitters is the third type of peers which has not been implemented yet. It is on the
development roadmap and will be implemented

Peers

Orderer nodes

• Ordering nodes receive transactions from endorsers along with read-write sets, arrange them in a
sequence, and send those to committing peers. Committing peers then perform validation and committing
to the ledger.

• All peers make use of certificates issued by membership services.

Clients

• Clients are software that makes use of APIs to interact with the Hyperledger Fabric and propose
transactions.

Channels

• Channels allow the flow of confidential transactions between different parties on the network. They
allow using the same blockchain network but with separate blockchains.

• Channels allow only members of the channel to view the transaction related to them, all other
members of the network will not be able to view the transactions.

World state database

• World state reflects all committed transaction on the blockchain. This is basically a key-value store
which is updated as a result of transactions and chaincode execution. For this purpose, either LevelDB
or CouchDB is used.

• LevelDB is a key-value store whereas CouchDB stores data as JSON objects which allows rich queries to
run against the database.

Transactions

• Transaction messages can be divided into two types: deployment transactions and invocation
transactions. The former is used to deploy new chaincode to the ledger, and the latter is used to call
functions from the smart contract. Transactions can be either public or confidential.

• Public transactions are open and available to all participants whilst confidential transactions are visible
only in a channel open to its participants.

Membership Service Provider (MSP)

• MSP is a modular component that is used to manage identities on the blockchain network. This
provider is used to authenticate clients who want to join the blockchain network.

Smart contracts

• In Hyperledger Fabric same concept of smart contracts is implemented but they are called chain
code instead of smart contracts.

• They contain conditions and parameters to execute transactions and update the ledger.
Chaincode is usually written in Golang

Crypto service provider
• As the name suggests this is a service that provides cryptographic algorithms and standards for usage in

the blockchain network.

• This service provides key management, signature and verification operations, and encryption-
decryption mechanisms.

• This service is used with the membership service to provide support for cryptographic operations for
elements of blockchain such as endorsers, clients, and other nodes and peers.

Scalability and Other Challenges

• Even though various use cases and proof of concept systems have been developed and the
technology works well for many of the scenarios, there still is a need to address some fundamental
limitations that are present in blockchains in order to make this technology more adaptable.

• At the top of the list of these issues comes scalability and then privacy.

• Both of these are important limitations to address, especially as blockchains are envisioned to be
used in privacy-demanding industries too. There are specific requirements around confidentiality of
transactions in finance, law, and health.

• scalability is generally a concern where blockchains do not meet the adequate performance levels
expected by the users.

Approach toward tackling the scalability issue:

• Block size increase

• This is the most debated proposal for increasing blockchain performance (transaction processing
throughput).

• Currently, Bitcoin can process only about three to seven transactions per second, which is a
major inhibiting factor in adapting the Bitcoin blockchain for processing microtransactions.

• Block size in Bitcoin is hardcoded to be 1 MB, but if the block size is increased, it can hold more
transactions and can result in faster confirmation time. There are several Bitcoin Improvement
Proposals (BIPs) made in favor of block size increase. These include BIP 100, BIP 101, BIP 102, BIP
103, and BIP 109.

• In Ethereum, the block size is not limited by hardcoding; instead, it is controlled by a gas limit. In
theory, there is no limit on the size of a block in Ethereum because it's dependent on the amount
of gas, which can increase over time

• a blockchain can be divided into various abstract layers called planes. Each plane is responsible for
performing specific functions. These include the network plane, consensus plane, storage plane, view
plane, and side plane.

Blockchain

Network
Plane

Consensus
Plane

Storage
Plane

View Plane

Side Plane

• A key function of the network plane is transaction
propagation.

• This plane underutilizes the network bandwidth due
to the way transaction validation is performed by a
node before propagation and duplication of
transaction propagation, first in the transaction
broadcast phase, and then after mining in a block.

• This layer is responsible for mining and
achieving consensus.

• Bottlenecks in this layer revolve around
limitations in PoW algorithms whereby
increasing consensus speed and
bandwidth results in compromising the
security of the network due to an
increase in the number of forks.

• Bitcoin has a method available called pruning, which
allow s a node to operate without the need to keep
the full blockchain in its storage.

• Pruning means that when a Bitcoin node has
downloaded the blockchain and validated it, it
deletes the old data that it has already validated.
This saves storage space. This functionality has
resulted in major improvements from a storage
point of view.

• Bitcoin miners do not need the full
blockchain to operate, and a view can be
constructed out of the complete ledger as a
representation of the entire state of the
system, which is sufficient for miners to
function.

• This plane represents the idea of off-chain
transactions whereby the concept of
payment or transaction channels is used to
offload the processing of transactions
between participants but is still backed by
the main Bitcoin blockchain.

Block interval reduction

• Another proposal is to reduce the time between each block generation. The time between blocks can
be decreased to achieve faster finalization of blocks but may result in less security due to the
increased number of forks.

• Ethereum has achieved a block time of approximately 14 seconds.

Invertible Bloom Lookup Tables

• The key idea is based on the fact that there is no need to transfer all transactions between nodes;
instead, only those that are not already available in the transaction pool of the syncing node are
transferred.

• This allows quicker transaction pool synchronization between nodes, thus increasing the overall
scalability and speed of the Bitcoin

Sharding

• The key idea behind sharding is to split up the tasks into multiple chunks that are then processed by
multiple nodes. This results in improved throughput and reduced storage requirements.

• In blockchains, a similar scheme is employed whereby the state of the network is partitioned into
multiple shards. The state usually includes balances, code, nonce, and storage. Shards are loosely
coupled partitions of a blockchain that run on the same network. There are a few challenges related to
inter-shard communication and consensus on the history of each shard.

State channels
• The basic idea is to use side channels for state updating and processing

transactions off the main chain; once the state is finalized, it is written back
to the main chain, thus offloading the time-consuming operations from the
main blockchain.

• State channels work by performing the following three steps:
1. First, a part of the blockchain state is locked under a smart

contract, ensuring the agreement and business logic between
participants.

2. Now off-chain transaction processing and interaction is started
between the participants that update the state only between
themselves for now. In this step, almost any number of
transactions can be performed without requiring the
blockchain and this is what makes the process fast and a best
candidate for solving blockchain scalability issues. However, it
could be argued that this is not a real on-blockchain solution
such as, for example, sharding, but the end result is a faster,
lighter, and robust network which can prove very useful in
micropayment networks, IoT networks, and many other
applications.

3. Once the final state is achieved, the state channel is closed and
the final state is written back to the main blockchain. At this
stage, the locked part of the blockchain is also unlocked.

• Private blockchain
• Proof of Stake
• Sidechains
• Subchains
• Tree chains
• Block propagation

Plasma

• This proposal describes the idea of running smart contracts on root blockchain (Ethereum MainNet)
and have child blockchains that perform high number of transactions to feedback small amounts of
commitments to the parent chain.

• In this scheme, blockchains are arranged in a tree hierarchy with mining performed only on the root
(main) blockchain which feeds the proofs of security down to child chains. This is also called a Layer-
2 system, like state channels also operate on Layer 2, and not on the main chain.

Privacy

• Privacy of transactions is a much-desired property of blockchains.

• However, due to its very nature, especially in public blockchains, everything is transparent, thus
inhibiting its usage in various industries where privacy is of paramount importance, such as
finance, health, and many others.

• There are different proposals made to address the privacy issue and some progress has already
been made. Several techniques, such as Indistinguishability Obfuscation (IO), usage of
homomorphic encryption, ZKPs, and ring signatures

Indistinguishability Obfuscation

• This cryptographic technique may serve as a silver bullet to all privacy and confidentiality issues
in blockchains but the technology is not yet ready for production deployments.

• IO allows for code obfuscation, which is a very ripe research topic in cryptography and, if applied
to blockchains, can serve as an unbreakable obfuscation mechanism that will turn smart
contracts into a black box.

Homomorphic encryption

• This type of encryption allows operations to be performed on encrypted data. Imagine a
scenario where the data is sent to a cloud server for processing. The server processes it and
returns the output without knowing anything about the data that it has processed.

• d fully homomorphic encryption that allows all operations on encrypted data is still not fully
deployable in production

Zero-Knowledge Proofs

• Zero-Knowledge Proof is a cryptographic technique where no information is revealed
during a transaction except for the interchange of some value known to both the prover
and verifiers (the two ends of the process).

• The idea behind zero-knowledge proof is that a user can prove to another user that they
know an absolute value without actually revealing any other or extra information.

• Privacy using state channels is also possible, simply due to the fact that all transactions
are run off-chain and the main blockchain does not see the transaction at all except for
the final state output, thus ensuring privacy and confidentiality.

State channels

Secure multiparty computation

• The concept of secure multiparty computation is not new and is based on the notion that
data is split into multiple partitions between participating parties under a secret sharing
mechanism which then does the actual processing on the data without the need of the
reconstructing data on a single machine. The output produced after processing is also shared
between the parties.

Usage of hardware to provide confidentiality

Confidential transactions

Security

• Even though blockchains are generally secure and make use of asymmetric and symmetric
cryptography as required throughout the blockchain network, there still are few caveats that
can result in compromising the security of the blockchain.

• There are a few examples of transaction malleability, eclipse attacks, and the possibility of
double spending in bitcoin that, in certain scenarios, have been shown to work by various
researchers. Transaction malleability opens up the possibility of double withdrawal or deposit
by allowing a hacker to change a transaction's unique ID before the Bitcoin network can
confirm it, resulting in a scenario where it would seem that transactions did not occur.

• BIP 62 is one of the proposals along with SegWit that have suggested solutions to solve this
issue.

THANK YOU!

	Welcome
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 21
	Slide 25

	Slide 1
	Slide 2: Hyperledger
	Slide 3: Projects under Hyperledger
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: Thank You!

