
EMBEDDED SYSTEMS

(UNIT-III)

INTRODUCTION TO EMBEDDED SYSTEM

An embedded system is a system that has software embedded into

computer-hardware, which makes a system dedicated for an

application (s) or specific part of an application or product or part of

a larger system.

An embedded system is one that has a dedicated purpose software

embedded in a computer hardware.

It is a dedicated computer based system for an application(s) or

product. It may be an independent system or a part of large system.

Its software usually embeds into a ROM (Read Only Memory) or

flash.

It is any device that includes a programmable computer but is not

itself intended to be a general purpose computer.

Embedded Systems are the electronic systems that contain a

microprocessor or a microcontroller, but we do not think of them as

computers – the computer is hidden or embedded in the system.

EMBEDDED SYSTEMS VS GENERAL COMPUTING SYSTEMS

Criteria General Purpose Computer Embedded System

Contents A system which is a

combination of a generic

hardware and a General

Purpose Operating System for

executing a variety of

applications

A system which is a combination of

special purpose hardware and embedded

OS/firmware for executing a specific set

of applications.

OS It contains a general purpose

operating system (GPOS)

It may or not contain an operating system

for functioning

Alterations Alterations Applications are

alterable by the user.

Applications are not-alterable by the

user

Key factors Performance is key factor Application specific requirements are

key factors

Power

Consumption

More Less

Response Time Not Critical Critical for some applications

Execution Need not be deterministic Deterministic for certain types of ES like

‘Hard Real Time’ systems.

HISTORY AND CLASSIFICATION OF

EMBEDDED SYSTEMS

In the earliest years of computers in 1930 – 40s, computers were

sometimes dedicated to a single purpose task.

One of the first recognizably modern embedded system was the

Apollo Guidance Computer, developed by Charles Stark Draper at

the MIT Instrumentation Laboratory.

Since these early applications in the 1960s, embedded systems

have come down in price and there has been a dramatic rise in

processing power and functionality. The first microprocessor for

example, the Intel 4004 was designed for calculators and other small

systems but still required many external memory and support chips.

By the mid-1980s, most of the common previously external system

components had been integrated into the same chip as the processor

and this modern form of the microcontroller allowed an even more

widespread use, which by the end of the decade were the norm rather

than the exception for almost all electronics devices

Stand Alone Embedded Systems
Stand alone embedded systems do not require a host system like a

computer, it works by itself. It takes the input from the input ports

either analog or digital and processes, calculates and converts the data

and gives the resulting data through the connected device-Which

either controls, drives and displays the connected devices. Examples

for the stand alone embedded systems are mp3 players, digital

cameras, video game consoles, microwave ovens and temperature

measurement systems.

Real Time Embedded Systems
A real time embedded system is defined as, a system which gives a

required o/p in a particular time.These types of embedded systems

follow the time deadlines for completion of a task. Real time

embedded systems are classified into two types such as soft and hard

real time systems.

Networked Embedded Systems
These types of embedded systems are related to a network to access

the resources. The connected network can be LAN, WAN or the

internet. The connection can be any wired or wireless. This type of

embedded system is the fastest growing area in embedded system

applications. The embedded web server is a type of system wherein

all embedded devices are connected to a web server and accessed

and controlled by a web browser.Example for the LAN networked

embedded system is a home security system wherein all sensors are

connected and run on the protocol TCP/IP

Small Scale Embedded Systems
These types of embedded systems are designed with a single 8 or 16-

bit microcontroller, that may even be activated by a battery. For

developing embedded software for small scale embedded systems,

the main programming tools are an editor, assembler, cross

assembler and integrated development environment (IDE). IDE will

contains an

EDITOR,COMPLIER,LINKER,DEBUGGER,SIMULATOR ,etc.

IDEs are different for different family of processors/controllers. For

Example KEIL MICRO VISION3 IDE used for all family members

of 8051 microcontroller, since it contains compiler C51

Mobile Embedded Systems
Mobile embedded systems are used in portable embedded devices

like cell phones, mobiles, digital cameras, mp3 players and personal

digital assistants, etc. The basic limitation of these devices is the

other resources and limitation of memory.

Sophisticated Embedded Systems
These types of embedded systems have enormous hardware and

software complexities, that may need ASIPs, IPs, PLAs, scalable or

configurable processors. They are used for cutting-edge

applications that need hardware and software Co-design

and components which have to assemble in the final system.

Major Application Areas
1. Consumer electronics: Camcorders, cameras, etc

2. Household appliances: Television, DVD players, washing

machine, fridge, microwave oven, etc.

Medium Scale Embedded Systems
These types of embedded systems design with a single or 16 or 32 bit

microcontroller, RISCs or DSPs. These types of embedded systems

have both hardware and software complexities. For developing

embedded software for medium scale embedded systems, the main

programming tools are C, C++, JAVA, Visual C++, RTOS, debugger,

source code engineering tool, simulator and IDE.

5.Telecom: Cellular telephones, telephone switches, handset

multimedia applications, etc

6. Computer peripherals: Printers, scanners, fax machines, etc.

7. Computer Networking systems: Network routers, switches,

hubs, firewalls, etc

8. Healthcare: Different kinds of scanners, EEG, ECG machines

9. Measurement & Instrumentation: Digital multi meters, digital

CROs, logic analyzers PLC systems, etc.

10.Banking & Retail: Automatic teller machines (ATM) and

currency counters, point of sales (POS)

11.Card Readers: Barcode, smart card readers, hand held devices,

3. Home automation and security systems: Air conditioners,

sprinklers, intruder detection alarms, closed circuit television

cameras, fire alarms, etc

4.Automotive industry: Anti-lock breaking systems (ABS), engine

control, ignition systems, automatic navigation systems, etc

PURPOSE OF EMBEDDED SYSTEMS

1) Data Collection/Storage/Representation
 Embedded systems designed for the purpose of data collection

performs acquisition of data from the external world.

 Data collection is usually done for storage, analysis,

manipulation and transmission.

 Data can be either analog (continuous) or digital (discrete).

 Embedded systems with analog data capturing techniques collect

data directly in the form of analog signal whereas embedded

systems with digital data collection mechanism converts the analog

signal to the digital signal using analog to digital (A/D) converters

and then collects the binary equivalent of the analog data.

 If the data is digital, it can be directly captured without any

additional interface by digital embedded systems.

A digital camera is a typical example of an embedded system with

data collection/storage/representation of data.

 Images are captured and the captured image may be stored within

the memory of the camera. The captured image can also be presented

to the user through a graphic LCD unit.

2)Data Communication
 Embedded data communication systems are deployed in

applications from complex satellite communication systems to simple

home networking systems.

 The transmission is achieved either by a wire-line medium or by a

wire-less medium. Data can either be transmitted by analog means or

by digital means

 The data collecting embedded terminal itself can incorporate data

communication units like Wireless modules (Bluetooth, ZigBee, Wi-

Fi, EDGE, GPRS, etc.) or wire-line modules (RS-232C, USB, TCP/IP,

PS2,etc).

 Network hubs, routers, switches, etc. are typical examples of

dedicated data transmission embedded systems.

3)Data (Signal) Processing
 Embedded systems with signal processing functionalities are

employed in applications demanding signal processing like speech

coding, synthesis, audio video codec, transmission applications,

etc.

 A digital hearing aid is a typical example of an embedded system

employing data processing.

 Digital hearing aid improves the hearing capacity of hearing

impaired person

4) Monitoring

 Almost all embedded products coming under the medical domain

are with monitoring functions only.

 Electro cardiogram machine (ECG) is intended to do the

monitoring of the heartbeat of a patient but it cannot impose control

over the heartbeat.

 Other examples with monitoring function are digital CRO, digital

multimeters, and logic analyzers.

5) Control
 A system with control functionality contains both sensors and

actuators.

 Sensors are connected to the input port for capturing the changes in

environmental variable or measuring variable.

 The actuators connected to the output port are controlled according

to the changes in the input variable.

 Air conditioner system used in our home to control the room

temperature to a specified limit is a typical example for ES for

CONTROL purpose.

6) Applications specific user interface
 Buttons, switches, keypad, lights, speakers, display units, etc. are

application-specific user interfaces.

Mobile phone is an example of application specific user interface.

 In mobile phone the user interface is provided through the keypad,

graphic LCD module, system speaker, vibration alert, etc

CHARACTERISTICS OF EMBEDDED SYSTEMS

 All Embedded Systems are task specific. They do the same task

repeatedly /continuously over their lifetime. An mp3 player will

function only as an mp3 player.

 Embedded systems are created to perform the task within a certain

time frame. It must therefore perform fast enough. A car’s brake

system, if exceeds the time limit, may cause accidents.

 They have minimal or no user interface (UI). A fully automatic

washing machine works on its own after the programme is set and

stops once the task is over.

 Some embedded systems are designed to react to external stimuli

and react accordingly. A thermometer, a GPS tracking device.

 Embedded systems are built to achieve certain efficiency levels.

They are small sized, can work with less power and are not too

expensive

 Embedded systems are built to achieve certain efficiency levels.

They are small sized, can work with less power and are not too

expensive.

 Embedded systems cannot be changed or upgraded by the users.

Hence, they must rank high on reliability and stability. They are

expected to function for long durations without the user

experiencing any difficulties.

Microcontroller or microprocessors are used to design embedded

systems.

 Embedded systems need connected peripherals to attach input &

output devices.

 The hardware of an embedded-system is used for security and

performance. The Software is used for features.

QUALITY ATTRIBUTES OF EMBEDDED

SYSTEMS

The operational quality attributes represent the relevant quality

attributes related to the embedded system when it is in the operational

mode or ‘online’ mode. The important quality attributes coming under

this category are listed below:

a) Response

b)Throughput

c) Reliability

d) Maintainability

e) Security

f) Safety

.

A) Response
 Response is a measure of quickness of the system.

 It gives you an idea about how fast your system is tracking the

input variables.

Most of the embedded system demand fast response which should

be real-time.

 Ex. An embedded system deployed in flight control application

should respond in a Real Time manner.

 Any response delay in the system will create potential damages to

the safety of the flight as well as the passengers.

 It is not necessary that all embedded systems should be Real Time

in response.

 For example, the response time requirement for an electronic toy is

not at all time-critical

b) Throughput
 Throughput deals with the efficiency of system.

 It can be defined as rate of production or process of a defined

process over a stated period of time.

 The rates can be expressed in terms of units of products, batches

produced, or any other meaningful measurements.

 In case of card reader like the ones used in buses, throughput

means how much transactions the Reader can perform in a minute

or hour or day.

 Throughput is generally measured in terms of ‘Benchmark’. A

‘Benchmark’ is a reference point by which something can be

measured.

 Benchmark can be a set of performance criteria that a product is

expected to meet or a standard product that can be used for

comparing other products of the same product line.

c)Reliability
 Reliability is a measure of how much percentage you rely upon the

proper functioning of the system or what is the % susceptibility of

the system to failure.

Mean Time Between Failures (MTBF) and Mean Time To Repair

(MTTR) are the terms used in defining system reliability.

MTBF gives the frequency of failures in hours/weeks/months.

MTTR specifies how long the system is allowed to be out of order

following a failure.

 For an embedded system with critical application need, it should be

of the order of minutes.

d)Maintainability
Maintainability deals with support and maintenance to the end user

or client in case of technical issues and product failures or on the

basis of a routine system check up.

 Reliability and maintainability are considered as two

complementary disciplines. A more reliable system means a system

with less corrective maintainability requirements and vice versa.

Maintainability can be classified into two types:
1. Scheduled or Periodic Maintenance (Preventive Maintenance) An

inkjet printer uses ink cartridges, which are consumable

components and as per the printer manufacturer the end use should

replace the cartridge after each ‘n’ number of printouts to get

quality prints.

2. Maintenance to Unexpected Failures (Corrective Maintenance) If

the paper feeding part of the printer fails the printer fails to print

and it requires immediate repairs to rectify this problem. Hence it

is obvious that maintainability is simply an indication of the

availability of the product for use. In any embedded system

design, the ideal value for availability is expressed as

𝑨𝒊 = 𝑴𝑻𝑩𝑭/(𝑴𝑻𝑩𝑭 + 𝑴𝑻𝑻𝑹)

Where Ai=Availability in the ideal condition,

MTBF=Mean Time Between Failures,

MTTR= Mean Time To Repair

e)Security
 ‘Confidentially’, ‘Integrity’, and ‘Availability’ are three major

measures of information security.

 ‘Confidentially’ deals with the protection of data and application from

unauthorized disclosure.

 ‘Integrity’ deals with the protection of data and application from

unauthorized modification.

 ‘Availability’ deals with protection of data and application from

unauthorized users.

 Certain embedded systems have to make sure they conform to the

security measures.

 Ex. An electronic safety Deposit Locker can be used only with a pin

number like a password.

f)Safety: Safety deals with the possible damages that can happen to the

operators, public and the environment due to the breakdown of an

embedded system or due to the emission of radioactive or hazardous

materials from the embedded products.

 The breakdown of an embedded system may occur due to a

hardware failure or a firmware failure.

 Safety analysis is a must in product engineering to evaluate the

anticipated damages and determine the best course of action to

bring down the consequences of the damages to an acceptable

level.

Non Operational Attributes

 The quality attributes that needs to be addressed for the product

‘not’ on the basic of operational aspects are grouped under this

category. The important quality attributes coming under this

category are listed below:

a)Testability & Debug-ability

b) Evolvability

c) Portability

d) Time to prototype and market

e) Per unit and total cost

a)Testability & Debug-ability
 Testability deals with how easily one can test his/her design,

application and by which means he/she can test it.

 For an embedded product, testability is applicable to both the

embedded hardware and firmware.

 Debug-ability is a means of debugging the product as such for

figuring out the probable sources that create unexpected behaviour

in the total system.

 Debug-ability has two aspects in the embedded system

development context, namely, hardware level debugging and

firmware level debugging.

 Hardware debugging is used for figuring out the issues created by

hardware problems whereas firmware debugging is employed to

figure out the probable errors that appear as a result of flaws in the

firmware.

b)Evolvability
 Evolvability is a term which is closely related to Biology.

 Evolvability is referred as the non-heritable variation.

 For an embedded system, the quality attribute ‘Evolvability’ refers to

the ease with which the embedded product (including firmware and

hardware) can be modified to take advantage of new firmware or

hardware technologies.

C)Portability
 Portability is a measure of ‘system independence’.

 An embedded product can be called portable if it is capable of

functioning in various environments, target processors/controllers and

embedded operating systems.

 A standard embedded product should always be flexible and portable

e)Per Unit Cost and Revenue

 Cost is a factor which is closely monitored by both end user (those

who buy the product) and product manufacturer (those who build the

product).

 Cost is a highly sensitive factor for commercial products.

 Proper market study and cost benefit analysis should be carried out

before taking decision on the per unit cost of the embedded product.

When the product is introduced in the market, for the initial period the

sales and revenue will be low.

d)Time-to-Prototype and Market
 Time-to-market is the time elapsed between the conceptualization

of a product and the time at which the product is ready for selling

(for commercial product) or use (for non-commercial products).

 The commercial embedded product market is highly competitive

and time to market the product is a critical factor in the success of a

commercial embedded product.

 Product prototyping helps a lot in reducing time-to-market.

 There won’t be much competition when the product sales and

revenue increase.

 During the maturing phase, the growth will be steady and revenue

reaches highest point and at retirement time there will be a drop in

sales volume.

Basic Structure of an Embedded System

EMBEDDED SYSTEM DESIGN
UNIT 1: ARM 32 BIT MCU’S

M.A. HIMAYATH SHAMSHI

Dept Of Electronics and communication

Why ARM 32 Bit MCU’s?
• Arm technology is in 190 billion devices and 95% of today's smart phones

• ARM stands for Advanced RISC (reduced instruction set computer) machine.

• ARM started life as part of Acorn makers of the BCC computer and now designs
chips for Apple iPad.

• The first ARM was established at Cambridge University in 1978.

• The Acorn group computers have developed the first ARM commercial RISC
processor in 1985.

• ARM was founded and very popular in 1990. The ARM using more than 98% of
the mobile phones in 2007 and 10 billion processors are shipped in 2008. ARM is
the latest technology which replaced by microcontrollers and microprocessors.
Basically ARM is a 16 bit/ 32 bit Processors or Controllers.

• ARM is the heart of advanced digital products like mobile phones automotive
systems digital cameras and home networking and wireless technologies.

• ARM is the most popular processor, particularly used in portable devices due to its
low power consumption and reasonable performance.

• ARM has got better performance when compared to other processors.

• The ARM processor is basically consisting of low power consumption and low
cost. It is very easy to use ARM for quick and efficient application developments
so that is the main reason why ARM is most popular.

The History of ARM & Microcontrollers

A computer made by General purpose microprocessor

Herein, the different parts of a system, including CPU, RAM, ROM, and I/Os, were put

together on a single IC chip and it was called microcontroller

Cheaper & Small and widely used in many devices

 SOC (System on Chip) and MCU (Micro Controller Unit) are other names used to refer

to microcontrollers

Types of Computers
Points Desktop Computers Servers Embedded Systems

Examples

Uses

PCs, tablets, desktop

computers and Types of

Computers laptops, are general

purpose computers

used to play games, read and

edit articles, and do any other

task

just by running the proper

application programs

used as web hosts,

database servers,

and in any application

in which we need to

process a huge amount

of data such as

weather

Forecasting

Used in any

application in which

we need to process a

huge amount of data

such as weather

forecasting

the Kindle, digital

camera, vacuum

cleaner, mp3 player,

mouse, keyboard, and

printer

In embedded system

devices, the software

application and

hardware are

embedded together

and are designed to

do a specific task

Points Desktop Computers Servers Embedded Systems

Made of Microprocessor Servers are made of

microprocessors but,

multiple processors

are usually used in

each server. Both

servers and desktop

computers

are connected to

several embedded

system devices such

as mouse, keyboard,

disk controller, Flash

stick memory and so

on

In most cases

embedded systems run a

fixed program (software

application) and contain

a microcontroller

Brief History of ARM
• The ARM came out of a company called Acorn Computers in United Kingdom

in the 1980s

• Professor Steve Furber of Manchester University worked with Sophie Wilson to
define the ARM architecture and instructions

• The VLSI Technology Corp. produced the first ARM chip in 1985 for Acorn
Computers and was designated as Acorn RISC (Reduced Instruction Set
Architecture) Machine (ARM)

• Unable to compete with x86 (8088, 80286, 80386, …) PCs from IBM and other
personal computer makers, the Acorn was forced to push the ARM chip into the
single-chip microcontroller market for embedded products

• That is when Apple Corp. got interested in using the ARM chip for the PDA
(personal digital assistants) products

• This renewed interest in the chip led to the creation of a new company called

ARM (Advanced RISC Machine)

• ARM is a performance based processor

ARM FAMILY AND ARCHITECTURE

ARM : ONE CPU, MANY PERIPHERALS
• ARM has defined the details of architecture, registers, instruction set, memory map , and timing of the

ARM CPU and holds the copyright to it.

• The various design houses and semiconductor manufacturers license the IP (intellectual property) for the
CPU and can add their own peripherals as they please.

• It is up to the licensee (design houses and semiconductor manufactures) to define the details of
peripherals such as I/O ports, serial port UART, timer, ADC, SPI, DAC, I2C, and so on.

• As a result while the CPU instructions and architecture are same across all the ARM chips made by
different vendors, their peripherals are not compatible.

• That means if you write a program for the serial port of an ARM chip made by TI (Texas Instrument),
the program might not necessarily run on an ARM chip sold by NXP.

• This is the only drawback of the ARM microcontroller.

• The good news is the IDE (integrated development environment) such as Keil (see www.keil.com)or
IAR (see www.IAR.com) do provide peripheral libraries for chips from various vendors and make the
job of programming the peripherals much easier.

• It must be noted that in recent years ARM provides the IP for some peripherals such as UART and SPI,
but unlike the CPU architecture, its adoption is not mandatory and it is up to the chip manufacturer
whether to adopt it or not.

• This is in contrast to the Cold fire microcontroller from Freescale, in which the Freescale defines the
architecture and peripherals, fabricates, sells, and supports the chip.

ARM VENDORS

ARM Architecture

This example smartphone contains the following processor

types:

• An A-profile processor as the main CPU running a rich OS

like Android

• A cellular modem, based on an R-profile processor,

provides connectivity

• Several M-profile processors handle operations like system

power management

• The SIM card uses Secure Core, an M-profile processor

with additional security features. Secure Core processors

are commonly used in smart cards

• Architecture means functional specification

• Arm Architecture implies functional specification of a

processer i.e., how the processor will behave

• It is like a contract between hardware & the software. The

architecture describes what functionality the software can

rely on the hardware to provide

Need to Study
• CPUs use registers to store data temporarily in arithmetic & logic operations.

• To program in Assembly language, it necessitates to understand the registers and architecture
of a given CPU and the role they play in processing data

• All of ARM registers are 32-bit wide

• These range from the MSB (most-significant bit) D31 to the LSB (least-significant bit) D0

• With a 32-bit data type, any data larger than 32 bits must be broken into 32-bit chunks before
it is processed

• size of the ARM is often referred as word. This is in contrast to x86 CPU in which word is

defined as 16-bit.

• In ARM the 16-bit data is referred to as half-word. Therefore ARM supports byte, half-word
(two byte), and word (four bytes) data types.

ARM POWERED PRODUCTS

RISC CISC

RISC stands for Reduced Instruction Set Computer CISC stands for Complex Instruction Set Computer

Hardware plays major role in RISC processors Software plays major role in CISC processors

RISC processors use single clock to execute an

instruction

CISC processors use multiple clocks for execution.

Memory-to-memory access is used for data

manipulations is RISC processors

intermediate registers are used for data manipulation

In RISC processors, single word instructions are given

as inputs

In CISC processors, instructions of variable lengths are

given as input, based upon the task to be performed

More lines of code and large memory footprint High code density

Compact, uniform instructions and hence facilitate

pipelining

Many addressing modes and long instructions

Allow effective compiler optimization Often require manual optimization of assembly code

for embedded systems

These machines provided a variety of instructions that

may perform very complex tasks, such as string

searching

These computers tended to provide somewhat fewer and

simpler instructions.

RISC and CISC Processors:

VON NEUMANN(Princeton) HARVARD ARCHITECTURE

Same memory holds data, instructions Separate memories for data and instructions

A single set of address/data buses between

CPU and memory

Two sets of address/data buses between

CPU and memory

Single memory fetch operation Harvard allows two simultaneous memory

Fetches

The code is executed serially and takes more

clock cycles

The code is executed in parallel

Not exactly suitable for DSP Most DSPs use Harvard architecture for

streaming data:

• greater memory bandwidth;

• more predictable bandwidth

There is no exclusive Multiplier It has MAC (Multiply Accumulate)

No Barrel Shifter is there Barrel Shifter help in shifting and rotating operations of the data

The programs can be optimized in lesser size The program tend to grow big in size

Used in conventional processors found in PCs and

Servers, and embedded systems with only control

functions.

Used in DSPs and other processors found in latest embedded

systems and Mobile communication systems, audio, speech,

image processing systems

Differences between Von Neumann and Harvard architecture:

INTRODUCTION TO ARM
• 32 bit microcontroller

• 32 bit ALU

• 32 bit Data bus

• It is 4 times powerful than 8051

• It will do 32bit operations in one cycle

• 32 bit fixed instruction length (Most important characteristic of RISC Architecture)

• Most of ARM implements 3 – instruction sets

• 1) 32 – bit ARM instructions set

• 2) 16 – bit Thumb instruction set

• 3) 8 – bit Jazelle instruction set, specially used to implement the concepts of JAVA byte code

• 32 bit Address bus (it can address 4GB of memory i.e. 2^32 = 4GB)

• Van Neuman model (common memory for program and data)

• 3-stage pipeline

• 37 Registers of 32bits each, at a time 16 are available(R0 to R15)

• Load – Store Architecture

• 7 – operating modes

• 7 – interrupts/ Exceptions

• 7- Addressing modes and 3 – data formats (8,16,32 bits)

• ARM 7 and ARM9 supports 300 MIPS when the die size is

0.13micrometer

• ALU operations are register based arithmetic and logic unit

RALU

• RALU performs Add ,sub, reverse sub, multiply and multiplying

with accumulate operation

• It has a barrel shifter which performs multibit left or right shifts

and rotate

• Extensive debug facilities like embedded In circuit emulator ICE,

Real time debug RT and on chip Joint text action group JTAG

interface units exist JTAG provides direct high speed access to

the MCU’S internal units (registers and control units)

ARM ORGANIZATION AND IMPLEMENTATION

Register set of ARM 37 Registers of 32bits each, at a

time 16 are available(R0 to R15)

 Program Counter

 CPSR

 SPSR(5)(Hold the status of the

CPSR)

 GPRs (30)

 The processor mode decides which

bank is accessible

 R13 (in all modes) is the OS stack

pointer, but it can be used as a

general purpose register when not

required for stack operations.

 R14(the link Register) holds the

return address form a subroutine

entered when you use the branch

with link (BL) instruction

 R15 is the program counter and

holds the current program address

(actually, it always points eight

bytes ahead of the current

instruction in ARM state and four

bytes ahead of the current

instruction in Thumb state

.

PROGRAM STATUS REGISTER

ARM PROCESSOR MODES
MODE Function Privilege MODE[4:0]

Abort(ABT) Entered on a memory access exception Yes 10111

Fast interrupt

request(FIQ)

Entered on an FIQ interrupt exception (High priority) Yes 10001

Interrupt request(IQ) Entered on an IRQ interrupt exception (Low priority) Yes 10010

Supervisor(SVC) Entered on reset or when a Supervisor Call instruction

is executed

Yes 10011

System(SYS) Mode in which the OS runs, sharing the register view

with User mode

Yes 11111

Undefined(UND) Entered when an undefined instruction executed Yes 11011

User(USR) Mode in which most programs and applications run No 10000

THUMB ARCHITECTURE AND FEATURES
 increases the clock rate up to 40MHZ

 Expanded cache of 8KB

 Thumb is a combination of new instruction

set with 16- bit long instruction format

 A hardware logic unit Translates thumb

instruction to regular Full 32bit length ARM

instruction

 Thumb will improve compiled code density

by about 25% to 35%

 In system with 16 bit wide memory an

ARM7 would run an application compiled

into thumb faster then if it had been compiled

32- bit ARM code

 In Thumb, the 16-bit opcodes have less

functionality. For example, only branches can

be conditional, and many opcodes are

restricted to accessing only half of all of the

CPU's general-purpose registers.

 The shorter opcodes give improved code

density overall

The Thumb instruction set
 The Thumb instruction set is a subset of the most commonly used 32-bit ARM

instructions.

 Thumb instructions are each 16 bits long, and have a corresponding 32-bit ARM

instruction that has the same effect on the processor model.

 Thumb instructions operate with the standard ARM register configuration, allowing

excellent interoperability between ARM and Thumb states.

 On execution, 16-bit Thumb instructions are transparently decompressed to full 32-bit

ARM instructions in real time, without performance loss.

 Thumb has all the advantages of a 32-bit core:

32-bit address space

32-bit registers

32-bit shifter, and Arithmetic Logic Unit (ALU)

32-bit memory transfer.

 Thumb therefore offers a long branch range, powerful arithmetic operations, and a

large address space.

 Thumb code is typically 65% of the size of ARM code, and provides 160% of the

performance of ARM code when running from a 16-bit memory system.

 Thumb, therefore, makes the ARM7TDMI core ideally suited to embedded

applications with restricted memory bandwidth, where code density and footprint

is important.

 The availability of both 16-bit Thumb and 32-bit ARM instruction sets gives

designers the flexibility to emphasize performance or code size on a subroutine

level, according to the requirements of their applications.

 For example, critical loops for applications such as fast interrupts and DSP

algorithms can be coded using the full ARM instruction set then linked with

Thumb code.

 ARM and Thumb are two different instruction sets supported by ARM cores

Thumb mode allows for code to be smaller, and can potentially be faster if the

target has slow memory. This brings very high code density, since Thumb

instructions are half the width of ARM instructions.

THUMB PROGRAMMERS MODEL

MEMORY SPACE ALLOCATION IN ARM
The ARM has 4GB of directly accessible memory space.

This memory space has addresses 0 to 0xFFFFFFFF. The

4GB of memory space can be divided into five sections.

They are as follows:

On-chip peripheral & IO Registers

On chip data SRAM

On-chip EEPROM

On-chip Flash ROM

Off-chip DRAM

On-chip peripheral & IO Registers

 This area is dedicated to general purpose I/O

(GPIO) and special function registers (SFRs) of

peripherals such as timers, serial

communication, ADC, and so on. In other

words, ARM uses memory-mapped I/O

On chip data SRAM

Used by the CPU for data variables & stack

It is a volatile memory & its content are lost if

power to the chip is cut OFF

On chip data Flash ROM

Used by the CPU for program code

The on-chip Flash ROM is programmed and erased in block size i.e., 8 16, 32 or 64 bytes

On chip EEPROM

It is considered to be memory that one can add externally to the chip

Used most often for critical system data that must not be lost if power is cut off

The on-chip EEPROM is byte programmable and erasable

 All the instructions of the ARM are 32-bit wide. In other words, every instruction of ARM is fixed at 32-

bit which is one of the most important characteristics of RISC architecture

 In cases where there is no need for all the 32-bit, the ARM adds zeros to make the instruction fixed at 32-

bit

 32-bit word operates separately on each byte of a word that will be divided into four 8-bits called byte0,

byte1, byte2, byte3

 Processor can operate on the words as per initialization for their alignment memory addresses

 A word alignment can be Big endian and Little endian

Little Endian : LSB has

Lowest address

Big Endian : LSB has

Highest address

ARM Instruction Formats
ARM instructions are 32 bits wide, and Thumb instructions are 16 wide. Thumb mode allows for

code to be smaller and can potentially be faster if the target has slow memory

The Thumb instruction format is designed to compete with the 8- and 16-bit microcontrollers and increase
code density

The ARM CPU uses the tri-part instruction format for most instructions. One of the most common
format is:

Instruction destination,source1,source2

Depending on the instruction

• the source2 can be a register, immediate (constant) value, or memory

• The destination is often a register or read/write memory

When programming the registers of the ARM microcontroller with an immediate value, the following
points should be noted:

• put # in front of every immediate value

• If we want to present a number in hex, we put a 0x in front of it. If we put nothing in front of a
number, it is in decimal

• For example,

• “MOV R1,#50”, R1 is loaded with 50 in decimal,

• whereas in “MOV R1,#0x50”, R1 is loaded with 50 in hex (80 in decimal)

ADDRESSING MODES OF ARM
1) Immediate Addressing mode, Ex: MOV Ro,#45H

ADD Ro , R1, #45H (R0 = R1 + 45H)

2) Register Addressing mode, Ex: MOV R0 , R1

ADD R0,R1,R2 (R0 = R1+R2)

3) Direct Addressing mode, Ex: LDR R0, Address (R0 = (Memory location Address))

STR R0, Address (R0 Memory location Address)

4) Indirect Addressing mode, Ex: LDR R0, [R1]

STR R0, [R1]

5) Register Relative Addressing mode in this AM Address is given by register + displacement

i) Normal register relative AM Ex: LDR R0, [R1, #80H] (R0 = R1Address + 80H) , R1 will not be changed

ii) Pre index register relative AM Ex: LDR R0, [R1, #80H]! (R0 = R1Address + 80H) , R1 will be changed

iii) Post index register relative AM Ex: LDR R0, [R1], #08H (R0 = R1, After the operation R1 will be changed)

6) Base index AM,

i) Normal Base index AM Ex: LDR R0, [R1,R2] R0 = R1+R2 (R1 will not change)

ii) pre index Base index AM Ex: LDR R0, [R1,R2]! R0 = R1+R2 (R1 will change to new location)

iii) post index Base index AM Ex: LDR R0, [R1], R2 R0 = R1 (R1 will be changed to the new location
given by R2)

7) Base with scaled index AM: In this addressing case on the base register is done with logical operators

i) normal base with scale index AM Ex: LDR R0, [R1,R2, LSL #3] R0 = R1+R2 (logical left shift R2 by 3)

(R1 will not change)

ii) Pre index Base with scale index AM Ex: LDR R0, [R1,R2, LSL #3]! R0 = R1+ R2 (Logical left shift R2 by 3)

R1 will be changed

iii) Post index Base with scale index AM Ex: LDR R0, [R1], LSL #3 R0 = [R1] (After performing this operation

R1 will be changed to new location that is

R1 = R1 + R2 (Logical left shift R2 by 3))
ORGANIZATION

ARM has a three-address format:

•Rd — destination register

•Rn — source register

•Rm — source register

Eg: ADD R0,R1,R2

Rn is used directly but Rm is passed through the barrel shifter,

A functional unit which can shift and rotate values. The result of

This is called operand2

ARM INSTRUCTION SET
1) Data Processing Instructions

2) Load Store Instructions

3) Branch Instructions

4) Status register access Instructions

 Data Processing Instructions : ARM performs computations on Data which are in registers only

MOV & MVN SYNTAX: <operation>{cond}{S} Rd,Operand2

MOV Destination, source Ex: MOV R11, R2 (if R2 = 0xFFF00000 then R11 = 0xFFF00000)

MVN Destination, source Ex : MVN R11, R2 (if R2 = 0xFFF00000 then R11 = 0x000FFFFF)

 The Barrel shifter instruction (shift and rotate)

i) Logical shift left (LSL) left shift by 1 is equal to multiplication by 2

Ex: LSL R1, #8

If R1 = 0xEF00DE12

Then R1 = 0x00DE1200

ii) Logical shift right (LSR) right shift by 1

Ex: LSR R2, #5

If R2 = 0x0456123F then after right shift

R2 = 0x0022B091 Equivalent to unsigned division by a power of 2

iii) Arithmetic shift right (ASR) right shift by 1 , this type of function is used for sign extension of data bcos for –ve

numbers MSB is 1 and for +ve numbers MSB is 0

Ex: ASR R1, R5 If R1 = 0xEF00DE12 & R5 = 5 then R1 = FEF00DE1 (As MSB = 1)

Arithmetic Shift Right by 4, positive value. Arithmetic Shift Right by 4, negative value.

signed division by a power of 2.

iv) Rotate Right (ROR) in this instruction the LSBs coming out of register fed back to MSB and the last bit out is also

available in CF. So there is no instruction to rotate left , Ex: ROR R2, R6 If R6 = 28 this

means R2 is rotated right by 28 times

if we need to rotate left by n-bits can be achieved by rotating right by (32- n)

Ex: ROR R2, R6 If R6 = 28 this means R2 is rotated right by 28 times . If we want to rotate R2 left then

(32 – n) = 32- 28 = 4

V) Rotate Right Extended [RRX]

Arithmetic Instructions
Arithmetic

Arithmetic Instructions Logical Instructions
<operation>{cond}{S} Rd,Rn,Operand2 <operation>{cond}{S} Rd,Rn,Operand2

ADD – Add AND – logical AND

Rd := Rn + Operand2 Rd = Rn AND Operand2

ADC – Add with Carry EOR – Exclusive OR

Rd := Rn + Operand2 + Carry Rd = Rn EOR Operand2

SUB – Subtract ORR – Logical OR

Rd := Rn − Operand2 Rd = Rn OR Operand2

SBC – Subtract with Carry BIC – Bitwise Clear

Rd := Rn − Operand2 − NOT(Carry) Rd = Rn AND NOT Operand2

RSB – Reverse Subtract

Rd := Operand2 − Rn

RSC – Reverse Subtract with Carry EXAMPLES

Rd := Operand2 − Rn − NOT(Carry) AND r8, r7, r2

R8 = R7 & R2

EXAMPLES ORR r11, r11, #1

•ADD r0, r1, r2 R11 1 =׀

•R0 = R1 + R2 EOR r11, r11, #1

•SUB r5, r3, #10 R11^ = 1

•R5 = R3 − 10 BIC r11, r11, #1

•RSB r2, r5, #0xFF00 R11& = ~1

•R2 = 0xFF00 − R5

COMPARE INSTRUCTIONS

• <operation>{cond} Rn,Operand2

• CMP – compare

• Flags set to result of (Rn − Operand2).

• CMN – compare negative

• Flags set to result of (Rn + Operand2).

• TST – bitwise test

• Flags set to result of (Rn AND Operand2).

• TEQ – test equivalence

• Flags set to result of (Rn EOR Operand2).

• Comparisons produce no results – they just set condition codes. Ordinary instructions will also set condition codes if
the “S” bit is set. The “S” bit is implied for comparison instructions.

Examples:

•CMP r0, #42

•Compare R0 to 42.

•CMN r2, #42

•Compare R2 to -42.

•TST r11, #1

•Test bit zero.

•TEQ r8, r9

•Test R8 equals R9.

•SUBS r1, r0, #42

•Compare R0 to 42, with result.

 CMP is like SUB.

 CMN is like ADD – subtract of a negative number is the same as add.

 TST is like AND.

 TEQ is like EOR – Exclusive- OR of identical numbers gives result of zero.

MULTIPLY INSTRUCTION
<operation>{cond}{S} Rd, Rm, Rs {, Rn}

•MUL – Multiply

•Rd := Rm × Rs

•MLA – Multiply with Accumulate

•Rd := Rn + (Rm × Rs)

The multiply instructions produce the same result for both signed and unsigned values.

Single Register Data Transfer
LDR

Rd := value at <address>

STR

value at <address> := Rd

{size} is specified to transfer bytes or half-words: <operation>B

unsigned byte

<operation>SB

signed byte

<operation>H

unsigned half-word

<operation>SH

signed half-word

EXAMPLE

•LDR r0,[r1]

•Load word addressed by R1 into R0.

•LDRB r0,[r1]

•The same as above but loads a byte.

Load And Store Instruction

MULTIPLE REGISTER DATA TRANSFER
<operation>{cond} Rn{!}, <reglist>

•LDM

•reglist := values at Rn

•STM

•values at Rn := reglist

<mode> controls how Rn is incremented:

•<op>IA – Increment after.

•<op>IB – Increment before.

•<op>DA – Decrement after.

•<op>DB – Decrement before.

<reglist> is the list of registers to load or store. It can be a comma-separated list or an Rx-Ry style range.

• LDMIA r0, {r3,r7}

Load words addressed by R0 into R3 and R7.

Increment After each load.

• LDMIA r0, {r3-r7}

Load words addressed by R0 into R3, R4, R5, R6 and R7.

Increment After each load.

• STMDB r1!, {r6-r8}

Store R6,R7,R8 into words addressed by R1.

Write back the final address into R1.

Decrement Before each store.

BRANCHING INSTRUCTIONS
<operation>{cond} <address>

•B – Branch

•PC := <address>

•BL – Branch with Link

•R14 := address of next instruction, PC := <address>

How do we return from the subroutine which BL invoked?

MOV pc, r14

. ……… ; some code here

B fwd ; jump to label 'fwd’

……... ; more code here

fwd

back

... ; more code here

B back ; jump to label 'back'

......

......

BL calc ; call 'calc'

...... ; returns to here

......

calc ; function body

ADD r0, r1, r2 ; do some work here

MOV pc, r14 ; PC = R14 to return

we implement control structures like for and while loops

Branch instructions are used to alter control flow.

• Branching forward, to skip over some code:

• Branching backwards, creating a loop:

• Using BL to call a subroutine:

CONDITIONAL EXECUTION
• A beneficial feature of the ARM architecture is that instructions can be made to execute conditionally. This is

common in other architectures’ branch or jump instructions but ARM allows its use with most mnemonics.

• The condition is specified with a two-letter suffix, such as EQ or CC, appended to the mnemonic. The condition is

tested against the current processor flags and if not met the instruction is treated as a no-op. This feature often

removes the need to branch, avoiding pipeline stalls and increasing speed. It can also increase code density.

• By default the data processing instructions do not affect the condition code flags but can be made to by suffixing S.

The comparison instructions CMP, TST, and co. do this implicitly.

EXAMPLE : Looping

The following code fragment is a do-while loop which runs until the counter in R1 hits zero, at which point the

condition code NE (not equal to zero) controlling the branch becomes false.

MOV r1, #10

loop

...

SUBS r1, r1, #1

BNE loop

CONDITION CODES
• Code Suffix Description Flags

• 0000 EQ Equal / equals zero Z

• 0001 NE Not equal !Z

• 0010 CS / HS Carry set / unsigned higher or same C

• 0011 CC / LO Carry clear / unsigned lower !C

• 0100 MI Minus / negative N

• 0101 PL Plus / positive or zero !N

• 0110 VS Overflow V

• 0111 VC No overflow !V

• 1000 HI Unsigned higher C and !Z

• 1001 LS Unsigned lower or same !C or Z

• 1010 GE Signed greater than or equal N == V

• 1011 LT Signed less than N != V

• 1100 GT Signed greater than !Z and (N == V)

• 1101 LE Signed less than or equal Z or (N != V)

• 1110 AL Always (default) any

Branch Interpretation Normal uses

B Unconditional Always take this branch

BAL Always Always take this branch

BEQ Equal Comparison equal or zero result

BNE Not equal Comparison not equal or non-zero result

BPL Plus Result positive or zero

BMI Minus Result minus or negative

BCC Carry clear Arithmetic operation did not give carry-

out

BLO Lower Unsigned comparison gave lower

BCS Carry set Arithmetic operation gave carry-out

BHS Higher or same Unsigned comparison gave higher or

same

BVC Overflow clear Signed integer operation; no overflow

occurred

BVS Overflow set Signed integer operation; overflow

occurred

BGT Greater than Signed integer comparison gave greater

than

BGE Greater or equal Signed integer comparison gave greater

or equal

BLT Less than Signed integer comparison gave less than

BLE Less or equal Signed integer comparison gave less than

or equal

BHI Higher Unsigned comparison gave higher

BLS Lower or same Unsigned comparison gave lower or

same

Examples of Conditional Instructions
CMP r0, #5 ; if (a == 5)

MOVEQ r0, #10

BLEQ fn ; fn(10)

(Assume a is in R0. Compare R0 to 5. The next two instructions will be executed

only if the compare returns Equal. They move 10 into R0, then call ‘fn’ (branch with

link, BL).)

Set the flags, then use various condition codes:

CMP r0, #0 ; if (x <= 0)

MOVLE r0, #0 ; x = 0;

MOVGT r0, #1 ; else x = 1;

Use conditional compare instructions:

CMP r0, #'A' ; if (c == 'A'

CMPNE r0, #'B' ; || c == 'B')

MOVEQ r1, #1 ; y = 1;

A sequence which doesn’t use conditional execution:

CMP r3, #0

BEQ next

ADD r0, r0, r1

SUB r0, r0, r2

next

...

By transforming the sequence with conditional execution

the BEQ instruction can be removed:

CMP r3, #0

ADDNE r0, r0, r1

SUBNE r0, r0, r2

...

SHARC Processor:

Features of SHARC processor:

1. SHARC stands for Super Harvard Architecture Computer

2. The ADSP-21060 SHARC chip is made by Analog Devices, Inc.

3. It is a 32-bit signal processor made mainly for sound, speech, graphics, and imaging applications.

4. It is a high-end digital signal processor designed with RISC techniques.

5. Number formats:

i. 32-bit Fixed Format

Fractional/Integer

Unsigned/Signed

ii. Floating Point

32-bit single-precision IEEE floating-point data format

40-bit version of the IEEE floating-point data format.

16-bit shortened version of the IEEE floating-point data format.

6. 32 Bit floating point, with 40 bit extended floating point capabilities.

7. Large on-chip memory.

8. Ideal for scalable multi-processing applications.

9. Program memory can store data.

10. Able to simultaneously read or write data at one location and get instructions from another place in memory.

11. 2 buses

Data memory bus.

Program bus.

12. Either two separate memories or a single dual-port memory

13. High-Speed Floating Point Capability

14. The SHARC supports floating, extended-floating and non-floating point.

15. No additional clock cycles for floating point computations.

16. Data automatically truncated and zero padded when moved between 32-bit memory and internal registers

SHARC PROCESSOR PROGRAMMING MODEL:
Programming model gives the registers details. The following registers are used in SHARC processors for various purposes:

 Register files: R0-R15 (aliased as F0-F15 for floating point)

 Status registers.

 Loop registers.

 Data address generator registers(DAG1 and DAG2)

 Interrupt registers.

 16 primary registers (R0-R15)

 16 alternate registers (F0-F15)

 each register can hold 40 bits

 R0 – R15 are for Fixed-Point Numbers

 F0 – F15 are for Floating-Point Numbers

STATUS REGISTERS
• ASTAT: arithmetic status.

• STKY: sticky.

• MODE 1: mode 1.

The Arithmetic Status Register (ASTAT) information. Use the

Core | Status| ASTAT menu function to access the ASTAT register

display window

Bit Name Definition

0 AZ ALU result zero or floating-point underflow

1 AV ALU overflow

2 AN ALU result negative

3 AC ALU fixed-point carry

4 AS ALU X input sign (ABS and MANT operations)

5 AI ALU floating-point invalid operation

6 MN Multiplier result negative

7 MV Multiplier overflow

8 MU Multiplier floating-point underflow

9 MI Multiplier floating-point invalid operation

10 AF ALU floating-point operation

11 SV Shifter overflow

12 SZ Shifter result zero

13 SS Shifter input sign

14 14-17 Reserved

18 BTF Bit test flag for system registers

19 FLG0 FLAG0 value

20 FLG1 FLAG1 value

21 FLG2 FLAG2 value

22 FLG3 FLAG3 value

23 Reserved

24-31 CACC (Compare Accumulation) bits

The Sticky Status Register (STKY) maintains -sticky+ versions of some of the

ASTAT bits and circular buffer overflow. Also, it contains flags on stack overflow

and underflow for the PC, status, and loop address and loop counter stacks. Use the

Core | Status| STKY menu function to access the STKY register display window

Bit Name Definition

0 AUS ALU floating-point underflow

1 AVS ALU floating-point overflow

2 AOS ALU fixed-point overflow

3-4 Reserved

5 AIS ALU floating-point invalid operation

6 MOS Multiplier fixed-point overflow

7 MVS Multiplier floating-point overflow

8 MUS Multiplier floating-point underflow

9 MIS Multiplier floating-point invalid operation

10-16 Reserved

17 CB7S DAG1 circular buffer 7 overflow

18 CB15S DAG2 circular buffer 15 overflow

19-20 Reserved

21 PCFL PC stack full

22 PCEM PC stack empty

23 SSOV Status stack overflow

24 SSEM Status stack empty

25 LSOV Loop address stack and loop counter stack overflow

26 LSEM Loop address stack and loop counter stack overflow

27 27-31 Reserved

The MODE1 register is a 32-bit control register that enables various operating modes

Bit Name Definition

0 Reserved

1 BR0 Bit-reverse for I0 (uses DMS0 only)

2 SRCU Alternate register select for computation units

3 SRD1H DAG1 alternate register select (7-4)

4 SRD1L DAG1 alternate register select (3-0)

5 SRD2H DAG2 alternate register select (15-12)

6 SRD2L DAG2 alternate register select (11-8)

7 SRRFH Register File alternate select for R(15-8)

8-9 Reserved

10 SRRFL Register File alternate select for R(7-0)

11 NESTM Interrupt Nesting Enable

12 IRPTEN Global Interrupt Enable

13 ALUSAT Enable ALU saturation (full scale in fixed point)

14 Reserved

15 TRUNC 1 = Floating-point truncation, 0 = round to nearest

16 RND32 1 = Round floating-point to 32 bits, 0 = round to 40 bits

17-31 Reserved

Multifunction computations or instruction

level parallel processing:

Can issue some computations in parallel:

 dual add-subtract;

 fixed-point multiply/accumulate and add,

subtract, average

 floating-point multiply and ALU operation

 multiplication and dual add/subtract

The Data Address Generator 1 (DAG1) registers generate data

memory addresses.

There are 8 sets of 32 bit registers in DAG1:

Index Registers I0-I7

Modify Registers M0-M7

Base Registers B0-B7

Length Registers L0-L7

Each register set (I, M, B, and L registers) has an alternate set.

The alternate registers divide into 2 groups:

a lower half (0-3) and an upper half (4-7). A bit in the

MODE1 register controls the selection of primary or alternate

status for each group.

Pipelining in SHARC processor:

Instructions are processed in three cycles:

 Fetch instruction from memory

 Decode the opcode and operand

 Execute the instruction

 SHARC supports delayed and non-delayed branches

 Specified by bit in branch instruction

 2 instruction branch delay slot

 Six Nested Levels of Looping in Hardware

Bus Architecture:

Twin Bus Architecture:

 1 bus for Fetching Instructions

 1 bus for Fetching Data

Improves multiprocessing by allowing more steps to occur during each clock

Addressing modes provided by DAG in

SHARC Processor:

1. The Simplest addressing mode

2. Absolute address

3. post modify with update mode

4. base-plus-offset mode

5. Circular Buffers

6. Bit reversal addressing mode

IO DEVICES AND INTERFACING AND

NETWORKS UNIT-- II

Timers/Counters

Interrupt controller

DMA

A/D &D/A

Displays

Keyboards

CAN, I2C, SPI, USB, IrDA

RS485, RS232

Bluetooth, Zigbee

❖ I/O is very much architecture/system dependent

❖ I/O requires cooperation between – processor that issues I/O command (read, write etc.)

buses that provide the interconnection between processor, memory and I/O devices

❖ I/O controllers that handle the specifics of control of each device and interfacing

devices that store data or signal events

I/O operations
❖Specific I/O instructions – I/O instruction specifies both the device number and a

command (or an address where the I/O device can find a series of commands) Example:

Intel x86 (IN and OUT between EAX register and an I/O port whose address is either an

immediate or in the DX register)

Memory-mapped I/O
❖ Portions of address space devoted to I/O devices (read/write to these addresses transfer

data or are used to control I/O devices)

❖ Memory ignores these addresses

❖ In both cases, only the O.S. can execute I/O operations or read/write data to memory-

mapped locations

Data transfer to/from I/O device
❖ Can be done either by – Using the CPU to transfer data from (to) the device to (from

memory.

❖ Can be done either via polling (programmed I/O operation) or interrupt

❖ Slow operation

Using DMA (direct-memory address)

❖ Having long blocks of I/O go through the processor via load-store is totally inefficient

❖ DMA (direct memory address) controller: – specialized “processor” for transfer of

blocks between memory and I/O devices w/o intervention from CPU

❖ Has registers set up by CPU for beginning memory address and count

❖ DMA device interrupts CPU at end of transfer

❖ DMA device is a master for the bus

❖ DMA stands for Direct Memory Access.

❖ It is designed by Intel to transfer data at the fastest rate.

❖ It allows the device to transfer the data directly to/from memory without any

interference of the CPU.

❖ Using a DMA controller, the device requests the CPU to hold its data,

address and control bus, so the device is free to transfer data directly

to/from the memory.

❖ The DMA data transfer is initiated only after receiving HLDA signal

from the CPU.

Following is the sequence of operations performed by a DMA −

❖ Initially, when any device has to send data between the device and the

memory, the device has to send DMA request (DRQ) to DMA

controller.

❖ The DMA controller sends Hold request (HRQ) to the CPU and waits

for the CPU to assert the HLDA.

❖ Then the microprocessor tri-states all the data bus, address bus, and

control bus. The CPU leaves the control over bus and acknowledges

the HOLD request through HLDA signal.

❖ Now the CPU is in HOLD state and the DMA controller has to

manage the operations over buses between the CPU, memory, and

I/O devices.

❖ DMA CONTROLLER 8257/8237

❖ It has four channels which can be used over four I/O devices.

❖ Each channel has 16-bit address and 14-bit counter.

❖ Each channel can transfer data up to 64kb.

❖ Each channel can be programmed independently.

❖ Each channel can perform read transfer, write transfer and verify

transfer operations.

❖ It generates MARK signal to the peripheral device that 128 bytes

have been transferred.

❖ It requires a single phase clock.

❖ Its frequency ranges from 250Hz to 3MHz.

❖ It operates in 2 modes, i.e., Master mode and Slave mode

Timer/Counter

A timer is a specialized type of clock which is used to measure time

intervals. A timer that counts from zero upwards for measuring time

elapsed is often called a stopwatch. It is a device that counts down

from a specified time interval and used to generate a time delay, for

example, an hourglass is a timer.

A counter is a device that stores (and sometimes displays) the number

of times a particular event or process occurred, with respect to a clock

signal. It is used to count the events happening outside the

microcontroller. In electronics, counters can be implemented quite

easily using register-type circuits such as a flip-flop.

Timer Counter

The register incremented for every

machine cycle.

The register is incremented considering 1

to 0 transition at its corresponding to an

external input pin (T0, T1).

Maximum count rate is 1/12 of the

oscillator frequency.

Maximum count rate is 1/24 of the

oscillator frequency.

A timer uses the frequency of the internal

clock, and generates delay.

A counter uses an external signal to count

pulses.

❖ An interrupt is a signal to the processor emitted by hardware or

software indicating an event that needs immediate attention.

❖Whenever an interrupt occurs, the controller completes the

execution of the current instruction and starts the execution of

an Interrupt Service Routine (ISR) or Interrupt Handler.

❖ ISR tells the processor or controller what to do when the interrupt

occurs.

❖ The interrupts can be either hardware interrupts or software

interrupts.

Hardware Interrupt
❖ A hardware interrupt is an electronic alerting signal sent to the

processor from an external device, like a disk controller or an

external peripheral.

❖ For example, when we press a key on the keyboard or move the

mouse, they trigger hardware interrupts which cause the processor to

read the keystroke or mouse position.

Software Interrupt
❖ A software interrupt is caused either by an exceptional condition or a

special instruction in the instruction set which causes an interrupt

when it is executed by the processor.

❖ For example, if the processor's arithmetic logic unit runs a command

to divide a number by zero, to cause a divide-by-zero exception, thus

causing the system to abandon the calculation or display an error

message. Software interrupt instructions work similar to subroutine

calls.

I/O DEVICES INTERFACING

General purpose digital interface system that can be used to transfer

data between two or more devices (GPIB)

❖ Up to 15 devices may be connected to one bus

❖ Total bus length may be up to 20 m and the distance between devices

may be up to 2 m

❖ Communication is digital (as opposed to analog) and messages are

sent one byte (8 bits) at a time

❖Message transactions are hardware handshake

❖ Data rates may be up to 1 Mbyte/sec

Universal Serial Bus (USB)
❖ A Universal Serial Bus (USB) is a common interface that enables

communication between devices and a host controller such as a

personal computer (PC) or smartphone.

❖ It connects peripheral devices such as digital cameras, mice,

keyboards, printers, scanners, media devices, external hard drives

and flash drives.

❖ One of the greatest features of the USB is hot swapping.

❖ This feature allows a device to be removed or replaced without the

past prerequisite of rebooting and interrupting the system.

❖ Older ports required that a PC be restarted when adding or

removing a new device.

❖ Rebooting allowed the device to be reconfigured and prevented

electrostatic discharge (ESD), an unwanted electrical current

capable of causing serious damage to sensitive electronic equipment

such as integrated circuits.

❖ Another USB feature is the use of direct current (DC).

❖ In fact, several devices use a USB power line to connect to DC current

and do not transfer data.

❖ Example devices using a USB connector only for DC current include a

set of speakers, an audio jack and power devices like a miniature

refrigerator, coffee cup warmer or keyboard lamp.

❖ USB Version 1 allowed for two speeds: 1.5 Mb/s (megabits per second)

and 12 Mb/s, which work well for slow I/O devices.

❖ USB Version 2 allows up to 480 Mb/s and is backward compatible with

slower USB devices.

❖ The first USB version 3 (USB 3.0 or SuperSpeed USB) was released in

2008, and allowed for a speed of 500 Mb/s. In 2013 and 2017, two new

USB version 3 were released: USB 3.1 and USB 3.2, which allowed for

1.21 Gb/s and 2.42 Gb/s, respectively.

Pin Configuration

The typical Type-A USB connector is used in various applications. These

USBs include 4 pins that are given below.

This type of USB is observed mostly in connecting various devices to

PC because it is the typical four-pin USB connector. This connector is

taller and narrower including 4-pins arranged within a box.

The pins of Type A USB are indicated with color wires to

perform a particular function.

❖ Pin1 (VBUS): It is a red color wire, used for providing

power supply.

❖ Pin2 (D-): It is a differential pair pin available in white

color, used for connectivity of USB.

❖ Pin3 (D+): It is a differential pair pin available in green

color, used for connectivity of USB.

❖ Pin4 (GND): It is a Ground pin, available in black

color.

In the above pins, both the D+ & D- pins indicate the

transfer of data. When a ‘1’ is sent across the wires, then

the D+ line will have positive flow, and if ‘0’ is sent then

the reverse happens.

❖ Once various I/O devices are connected through

USB to the computer then they all are structured

like a tree.

❖ In this USB structure, every I/O device will make

a point-to-point connection to transmit data

through the serial transmission format.

❖ I/O devices are connected to the computer

through USB which is called as a hub.

❖ The Hub within the architecture is the connecting

point between both the I/O devices as well as the

computer.

❖ The root hub in this architecture is used to

connect the whole structure to the hosting

computer.

❖ The I/O devices in this architecture are a

keyboard, mouse, speaker, camera, etc.

Infrared Data Association (IrDA)
❖ Infrared Data Association (IrDA) is a protocol suite designed to provide

wireless, line-of-sight connectivity between devices.

❖ IrDA, as available on Microsoft Windows, provides core services similar

to those exposed by Transmission Control Protocol (the TCP part of

TCP/IP).

❖ Infrared communication is a low-cost method of providing wireless,

point-to-point communication between two devices

❖ IrDA (Infrared Data Association) is an industry standard for wireless

communication with infrared light.

❖Many laptops sold today are equipped with an IrDA-compatible

transceiver that enables communication with other devices, such as

printers, modems, LANs, or other laptops.

❖ The Infrared Data Association (IrDA) defines physical specifications

communication protocol standard for the short-range exchange of

data over infrared light, for uses such as personal area networks (PANs)

Characteristics IrDA-Data Bluetooth

Physical Media Infrared RF (2.4 GHz)

Communications Range Up to at least 1m 10cm to 100m

Connection Type,

Direction

Point-to-Point, Narrow Angle (30

degrees)

Multipoint, Omni-

directional

Maximum Data Rate 4Mbps (16Mbps on the way) 1Mbps (aggregate)

❖ IR, or infrared, communication is a common, inexpensive, and

easy to use wireless communication technology.

❖ IR light is very similar to visible light, except that it has a slightly

longer wavelength.

❖ This means IR is undetectable to the human eye - perfect for

wireless communication.

IrDA Protocol Layers:
There are different IrDA protocol layers are there

❖ Application Layer

❖ Session Layer

❖ IrLMIAS

❖ IrTinyTP

❖ IrLMP

❖ Physical Layer

Physical Layer:

❖ This layer has an ability for accessing half

duplex or alternating directions duplex

access.

❖ It provides a value 1 m or 10 cm(For low

power LED).

❖ Different Modes: Synchronous PPM,

Synchronous Serial ,Asynchronous Serial

❖ (a) Layer 1—physical

❖ (b) Data link layer

2a—IrLAP (link access protocol)

2b—IrLMP (link management protocol)

❖ (c) Layer 3-4—transport layer

tiny TP (transport protocol) or

IrLMIAS (link management information access service protocol)

❖ (d)Layer 5—session

IrLAN(for Infrared LAN access)

IrBus(for access to serial bus by joysticks, keyboard, mice, and game ports)

IrMC(IrDA mobile communication and telephony protocol)

IrTran (IrDA transport protocol for image or file transfers)

IrComm [IrDA communication protocol by emulating serial (for example

RS232C COM) or parallel port]

IrOBEX (object exchange) Supports security by encryption and decryption at

transmitter and receiver, respectively

Communicates and exchanges binary data by establishing a client–server network

between two IR devices

❖ (e) Layers 6 and 7—security and application software layers as

specified by the IrDA Alliance Sync (PIM), object push (PIM), or

binary file transfer

Networks
(A)CAN

(B) I2C

(C) SPI

(D)RS485

(E) RS432

(F) Bluetooth

(G)Zigbee

❖ Controller Area Network (CAN) is another type of serial

communications protocol that was developed within the

automotive industry to allow a number of electronic units on a

single vehicle to share essential control data. A vehicle nowadays

uses many microcontrollers for autonomous control systems.

❖ The CAN bus is primarily used in embedded systems, and as its

name implies, is a network technology that provides fast

communication among microcontrollers up to real-time

requirements

❖ The CAN communication protocol is a carrier-sense, multiple-

access protocol with collision detection and arbitration on

message priority (CSMA/CD+AMP). CSMA means that each

node on a bus must wait for a prescribed period of inactivity before

attempting to send a message.

❖ Examples of CAN devices include engine controller (ECU),

transmission, ABS, lights, power windows, power steering,

instrument panel, and so on.

CAN architecture

❖ The CAN protocol uses the existing OSI reference model to transfer data between

the nodes connected in a network.

❖ The OSI reference model represents a set of seven layers where data passes

through during communication between connected devices.

❖ The seven-layered structure of the OSI model is reliable and widely used in several

communication protocols.

Application layer

It serves as a window for users and application processes to access network services. The common functions of

the layers are resource sharing, remote file access, network management, electronic messages and so on.

Presentation layer

The most important function of this layer is defining data formats such as ASCII text, EBCDIC text BINARY,

BCD and JPEG. It acts as a translator for data into a format used by the application layer at the receiving end of

the station.

Session layer

It allows to establishing, communicating and terminating sessions between processes running on two different

devices performing security, name recognition and logging.

Transport layer

The transport layer ensures that messages are delivered error-free, in sequence, and without loss or duplication.

It relieves the higher layer from any concern with the transfer of data between them and their peers.

Network layer

It provides end to end logical addressing system so that a packet of data can be routed across several layers and

establishes, connects and terminates network connections.

Data link layer

It packages raw data into frames transferred from physical layer. This layer is responsible for transferring frames

from one device to another without errors. After sending the frame it waits for the acknowledgement from

receiving device. Data link layer has two sub layers:

MAC (Medium Access Control) layer: It performs frame coding, error detection, signaling, serialization

and de-serialization.

LLC (Logical Link Control) layer: The LLC sub layer provides multiplexing mechanisms that make it

possible for several network protocols (IP, Decnet and Appletalk) to coexist within a multipoint network and

to be transported over the same network medium. It performs the function of multiplexing protocols

transmitted by MAC layer while transmitting and decoding when receiving and providing node-to-node flow

and error control.

Physical layer

❖ The physical layer transmits bit from one device to another and regulates the transmission of bit streams.

❖ It defines the specific voltage and the type of cable to be used for transmission protocols.

❖ It provides the hardware means of sending and receiving data on a carrier defining cables, cards and

physical aspects

❖ CAN protocol uses lower two layers of OSI i.e. physical layer and data link layer. The remaining five

layers that are communication layers are left out by BOSCH CAN specification for system designers to

optimize and adapt according to their needs.

CAN Framing

SOF: start of frame, which indicates that the new frame is entered in a network. It is of 1 bit.

Identifier: A standard data format defined under the CAN 2.0 A specification uses an 11-bit message identifier for

arbitration. Basically, this message identifier sets the priority of the data frame.

RTR: Remote Transmission Request, which defines the frame type, whether it is a data frame or a remote frame. It

is of 1-bit.

Control field: It has user-defined functions.

• IDE: Identifier extension. A dominant IDE bit defines the 11-bit standard identifier, whereas recessive IDE

bit defines the 29-bit extended identifier.

• DLC: Data Length Code, which defines the data length in a data field. It is of 4 bits.

• Data field: The data field can contain upto 8 bytes.

CRC field: The data frame also contains a cyclic redundancy check field of 15 bit, which is used to detect the

corruption if it occurs during the transmission time. The sender will compute the CRC before sending the data

frame, and the receiver also computes the CRC and then compares the computed CRC with the CRC received from

the sender. If the CRC does not match, then the receiver will generate the error.

ACK field: This is the receiver's acknowledgment. In other protocols

EOF: End of frame. It contains 7 consecutive recessive bits known End of frame.

SPI COMMUNICATION PROTOCOL
❖ When you connect a microcontroller to a sensor, display, or other module

❖ do you ever think about how the two devices talk to each other?

❖ What exactly are they saying?

❖ How are they able to understand each other?

❖ SPI is a common communication protocol used by many different devices.

❖ For example, SD card reader modules, RFID card reader modules, and 2.4 GHz

wireless transmitter/receivers all use SPI to communicate with microcontrollers.

❖ One unique benefit of SPI is the fact that data can be transferred without interruption.

❖ Any number of bits can be sent or received in a continuous stream.
❖ Devices communicating via SPI are in a master-slave relationship.

❖ The master is the controlling device (usually a microcontroller),

❖ while the slave (usually a sensor, display, or memory chip) takes instruction from the

master.

❖ The simplest configuration of SPI is a single master, single slave system, but one

master can control more than one slave

https://www.amazon.com/HiLetgo-Adater-Interface-Conversion-Arduino/dp/B07BJ2P6X6?keywords=sd+card+module&qid=1636858335&sr=8-3&linkCode=ll1&tag=circbasi-20&linkId=d9e913a9e94d083eb448948f245dce4b&language=en_US&ref_=as_li_ss_tl
https://www.amazon.com/SunFounder-Mifare-Reader-Arduino-Raspberry/dp/B07KGBJ9VG?keywords=rfid+card+reader+module&qid=1636857566&sr=8-3&linkCode=ll1&tag=circbasi-20&linkId=23654d198cf3131ab557b1719198bad9&language=en_US&ref_=as_li_ss_tl
https://www.amazon.com/gp/product/B00O9O868G/ref=as_li_qf_asin_il_tl?ie=UTF8&tag=circbasi-20&creative=9325&linkCode=as2&creativeASIN=B00O9O868G&linkId=c02cc5b391e8df72021a7d25f54edad4

❖ MOSI (Master Output/Slave Input) – Line for the

master to send data to the slave.

❖ MISO (Master Input/Slave Output) – Line for the

slave to send data to the master.

❖ SCLK (Clock) – Line for the clock signal.

❖ SS/CS (Slave Select/Chip Select) – Line for the

master to select which slave to send data to.

STEPS OF SPI DATA TRANSMISSION

ADVANTAGES

❖ No start and stop bits, so the data can be streamed continuously without

interruption

❖ No complicated slave addressing system like I2C

❖ Higher data transfer rate than I2C (almost twice as fast)

❖ Separate MISO and MOSI lines, so data can be sent and received at the same time

DISADVANTAGES

❖ Uses four wires (I2C and UARTs use two)

❖ No acknowledgement that the data has been successfully received (I2C has this)

❖ No form of error checking like the parity bit in UART

❖ Only allows for a single master

MULTIPLE SLAVES

INTRODUCTION TO I2C COMMUNICATION

❖ I2C combines the best features of SPI and UARTs.

❖ With I2C, you can connect multiple slaves to a single master (like SPI) and you

can have multiple masters controlling single, or multiple slaves.

❖ This is really useful when you want to have more than one microcontroller logging

data to a single memory card or displaying text to a single LCD

HOW I2C WORKS

❖ With I2C, data is transferred in messages.

❖ Messages are broken up into frames of data.

❖ Each message has an address frame that contains the binary address of the slave,

and one or more data frames that contain the data being transmitted.

❖ The message also includes start and stop conditions, read/write bits, and

ACK/NACK bits between each data frame:

Start Condition: The SDA line switches from a high voltage level to a low voltage level before the

SCL line switches from high to low

Stop Condition: The SDA line switches from a low voltage level to a high voltage level after the

SCL line switches from low to high.

)..

Address Frame: A 7 or 10 bit sequence unique to each slave that identifies the slave when the

master wants to talk to it.

Read/Write Bit: A single bit specifying whether the master is sending data to the slave (low

voltage level) or requesting data from it (high voltage level).

ACK/NACK Bit: Each frame in a message is followed by an acknowledge/no-acknowledge bit. If

an address frame or data frame was successfully received, an ACK bit is returned to the sender

from the receiving device.

STEPS OF I2C DATA TRANSMISSION

1. The master sends the start condition to every connected slave by switching the

SDA line from a high voltage level to a low voltage level before switching the

SCL line from high to low

2. The master sends each slave the 7 or 10 bit address of the slave it wants to

communicate with, along with the read/write bit

3. Each slave compares the address sent from the master to its own address. If the

address matches, the slave returns an ACK bit by pulling the SDA line low for

one bit. If the address from the master does not match the slave’s own address,

the slave leaves the SDA line high.

4. The master sends or receives the data frame

5. After each data frame has been transferred, the receiving device returns

another ACK bit to the sender to acknowledge successful receipt of the frame.
6. To stop the data transmission, the master sends a stop condition to the slave by

switching SCL high before switching SDA high.
ADVANTAGES

❖ Only uses two wires

❖ Supports multiple masters and multiple slaves

❖ ACK/NACK bit gives confirmation that each frame is

transferred successfully

❖ Hardware is less complicated than with UARTs

❖ Well known and widely used protocol

DISADVANTAGES

❖ Slower data transfer rate than SPI

❖ The size of the data frame is limited to 8 bits

❖ More complicated hardware needed to

implement than SPI

❖ The Rs-485 is one of the serial communication protocol that is used to send and

receive data bit-by-bit sequentially through a serial cable.

❖ It consists of four wires: Tx+, Tx_, Rx+ and Rx- as a twisted pair cable.

❖ The RS-485 protocol allows multiple slave devices (EEPROM, ADC) to

communicate at a time with a master device (microcontroller or any other

controller).

❖ The RS-485 device consist of 32 drivers that allow 32 devices to communicate at a

time.

❖ It is used to communicate high-speed data rates (1Mbps) and long-distance (1KM).

❖ The operating voltage of the RS -485 device is -7 to 12v. The RS-485 protocol

configured in two ways: “two-wire” or “four wire”.

RS-485 Protocol

RS232 is a standard protocol used for serial communication, it is used for connecting

computer and its peripheral devices to allow serial data exchange between them. As it obtains

the voltage for the path used for the data exchange between the devices

RS232

Universal Asynchronous Data Receiver &Transmitter

(UART) used in connection with RS232 for transferring

data between printer and computer. The microcontrollers

are not able to handle such kind of voltage levels,

connectors are connected between RS232 signals. These

connectors are known as the DB-9 Connector as a serial

port and they are of two type’s Male connector (DTE) &

Female connector (DCE).

RS232 works on the two-way communication that exchanges data to one another.

❖ There are two devices connected to each other, (DTE) Data Transmission Equipment& (DCE) Data

Communication Equipment which has the pins like TXD, RXD, and RTS& CTS.

❖ Now from DTE source, the RTS generates the request to send the data.

❖ Then from the other side DCE, the CTS, clears the path for receiving the data.

❖ After clearing a path, it will give a signal to RTS of the DTE source to send the signal.

❖ Then the bits are transmitted from DTE to DCE.

❖ Now again from DCE source, the request can be generated by RTS

❖ Now CTS of DTE sources clears the path for receiving the data and gives a signal to send

the data.

❖ This is the whole process through which data transmission takes place.

Zigbee
❖ Zigbee is a wireless technology developed as an open global market connectivity

standard to address the unique needs of low-cost, low-power wireless IoT data

networks.

❖ The Zigbee connectivity standard operates on the IEEE 802.15.4

❖ ZigBee protocol operates globally on a single frequency of 2.4 GHz.

❖ ZigBee offers wireless range of 70m indoors and 400m outdoors.

❖ It offers networking flexibility to covers homes of all size by offering support for

multiple networks like point-to-point, point-to-multipoint mesh-networks.

❖ There are 3 types of Zigbee

1. ZigBee Coordinator (ZC It communicates with routers. This device is used for

connecting the devices.)

2. ZigBee Router (ZR It is used for passing the data between devices.)
3. ZigBee End Device (ZED It is the device that is going to be controlled.)

General Characteristics of Zigbee Standard:
❖ Low Power Consumption

❖ Low Data Rate (20- 250 kbps)

❖ Short-Range (75-100 meters)

❖ Network Join Time (~ 30 msec)

❖ Support Small and Large Networks (up to 65000 devices (Theory); 240 devices (Practically))

❖ Low Cost of Products and Cheap Implementation (Open Source Protocol)

❖ Extremely low duty cycle.

❖ 3 frequency bands with 27 channels.

Operating Frequency Bands (Only one channel will be selected for use in a network):

1.Channel 0: 868 MHz (Europe)

2.Channel 1-10: 915 MHz (the US and Australia)

3.Channel 11-26: 2.4 GHz (Across the World)

Zigbee Network Topologies:
❖ Star Topology (ZigBee Smart Energy): Consists of a coordinator and several end devices, end devices

communicate only with the coordinator.

❖ Mesh Topology (Self Healing Process): Mesh topology consists of one coordinator, several routers, and end

devices.

❖ Tree Topology: In this topology, the network consists of a central node which is a coordinator, several routers,

and end devices. the function of the router is to extend the network coverage.

Architecture of Zigbee

❖ Physical layer: The lowest two layers i.e the physical and the MAC

(Medium Access Control) Layer are defined by the IEEE 802.15.4

specifications. The Physical layer is closest to the hardware and

directly controls and communicates with the Zigbee radio. The

physical layer translates the data packets in the over-the-air bits for

transmission and vice-versa during the reception.

❖ Medium Access Control layer (MAC layer): The layer is responsible

for the interface between the physical and network layer. The MAC

layer is also responsible for providing PAN ID and also network

discovery through beacon requests.

❖ Network layer: This layer acts as an interface between the MAC layer

and the application layer. It is responsible for mesh networking.

❖ Application layer: The application layer in the Zigbee stack is the

highest protocol layer and it consists of the application support sub-

layer and Zigbee device object. It contains manufacturer-defined

applications.

Zigbee Applications:
1.Home Automation

2.Medical Data Collection

3.Industrial Control Systems

4.meter reading system

5.light control system

Bluetooth
❖ Bluetooth is a standardized protocol for sending and receiving data via a 2.4GHz wireless

link.

❖ It's a secure protocol, and it's perfect for short-range, low-power, low-cost, wireless transmissions

between electronic devices.

❖ Physical Layer − This includes Bluetooth radio and Baseband (also in the data link layer.

• Radio − This is a physical layer equivalent protocol that lays down the physical structure and

specifications for transmission of radio waves. It defines air interface, frequency bands, frequency hopping

specifications, and modulation techniques.

• Baseband − This protocol takes the services of radio protocol. It defines the addressing scheme, packet

frame format, timing, and power control algorithms.

❖ Data Link Layer − This includes Baseband, Link Manager Protocol (LMP), and Logical Link Control and

Adaptation Protocol (L2CAP).

• Link Manager Protocol (LMP) − LMP establishes logical links between Bluetooth devices and maintains

the links for enabling communications. The other main functions of LMP are device authentication,

message encryption, and negotiation of packet sizes.

• Logical Link Control and Adaptation Protocol (L2CAP) − L2CAP provides adaption between upper

layer frame and baseband layer frame format. L2CAP provides support for both connection-oriented as

well as connectionless services.

❖ Middleware Layer − This includes Radio Frequency Communications (RF Comm) protocol, adopted

protocols, SDP, and AT commands.

• RF Comm − It is short for Radio Frontend Component. It provides a serial interface with WAP.

• Adopted Protocols − These are the protocols that are adopted from standard models. The commonly

adopted protocols used in Bluetooth are Point-to-Point Protocol (PPP), Internet Protocol (IP), User

Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Wireless Application Protocol

(WAP).

• Service Discovery Protocol (SDP)− SDP takes care of service-related queries

like device information so as to establish a connection between contending

Bluetooth devices.

• AT Commands − AT tension command set.

❖ Applications Layer − This includes the application profiles that allow the user to

interact with the Bluetooth applications.

Working Principal
❖ Bluetooth devices are categorised into a master device and slave devices.

❖ In the simplest method, time division multiplexing is used for master – slave

communications.

❖ Time slots of 625 µsec are defined the master starts transmitting in odd slots while

the slaves start transmitting in even slots.

❖ Length of frames can be 1, 3 or 5 slots.

❖ Each frame is associated with 126-bits overhead for access code and header, as

well as a 250 µsec/hop setting time.

Bluetooth Usage
Usage of Bluetooth can be broadly categorized into three areas −

❖ Access Points for Data and Voice − Real-time voice and data transmissions are provided by Bluetooth by

connecting portable and stationary network devices wirelessly.

❖ Cable replacement − Bluetooth replaces the need for a large number of wires and cables of wired networks.

The connections can be made instantly and are retained even when the devices are not within range. The range

of the devices is typically 10m. However, the range can be extended by using amplifiers.

❖ Ad hoc networking − Ad hoc networks are formed impromptu by the network devices bypassing the need for a

central access point like a router. Bluetooth networks are ad hoc in nature since a Bluetooth enabled device can

form an instant connection with another Bluetooth enabled device as soon as it comes into range.

Bluetooth Applications
❖ In laptops, notebooks and wireless PCs

❖ In mobile phones and PDAs (personal digital assistant).

❖ In printers.

❖ In wireless headsets.

❖ In wireless PANs (personal area networks) and even LANs (local area networks)

❖ To transfer data files, videos, and images and MP3 or MP4.

❖ In wireless peripheral devices like mouse and keyboards.

❖ In data logging equipment.

❖ In the short-range transmission of data from sensors devices to sensor nodes like mobile phones.

TYPICAL EMBEDDED

SYSTEMS

(UNIT-IV)

CORE OF THE EMBEDDED SYSTEM

Embedded systems are domain and application specific and are built

around a central core. The core of the embedded system falls into any

of the following categories:

1) General purpose and Domain Specific Processors

a) Microprocessors

b) Microcontroller

c) Digital Signal Processors

2) Application Specific Integrated Circuits(ASIC)

3) Programmable logic devices(PLD’s)

4) Commercial off-the-shelf components (COTs)

Almost 80% of the embedded systems are processor/ controller based.

The processor may be microprocessor or a microcontroller or digital

signal processor, depending on the domain and application.

a)Microprocessor

A microprocessor is a silicon chip representing a central processing

unit. A microprocessor is a dependent unit and it requires the

combination of other hardware like memory, timer unit,

and interrupt controller, etc. for proper functioning.

DIFFERENCES BETWEEN MP AND MC

Microprocessor Microcontroller

Microprocessors are multitasking in

nature. Can perform multiple tasks at a

time. For example, on computer we can

play music while writing text in text

editor.

Single task oriented. For example, a

washing machine is designed for

washing clothes only.

RAM, ROM, I/O Ports, and Timers can

be added externally and can vary in

numbers.

RAM, ROM, I/O Ports, and Timers

cannot be added externally. These

components are to be embedded together

on a chip and are fixed in numbers.

Microprocessor Microcontroller

Designers can decide the number of

memory or I/O ports needed

Fixed number for memory or I/O makes

a microcontroller ideal for a limited but

specific task.

External support of external memory and

I/O ports makes a microprocessor-based

system heavier and costlier.

Microcontrollers are lightweight and

cheaper than a microprocessor.

External devices require more space and

their power consumption is higher.

A microcontroller-based system

consumes less power and takes less

space.

VON-NEUMANN ARCHITECTURE VS HARVARD

ARCHITECTURE

Von-Neumann Architecture Harvard Architecture

Single memory to be shared by

both code and data.

Separate memories for code and

data.

Processor needs to fetch code in a

separate clock cycle and data in

another clock cycle. So it requires

two clock cycles.

Single clock cycle is sufficient, as

separate buses are used to access

code and data.

Higher speed, thus less time

consuming.

Slower in speed, thus more time-

consuming.

Simple in design. Complex in design.

CISC RISC

Larger set of instructions. Easy to

program

Smaller set of Instructions. Difficult to

program.

Simpler design of compiler, considering

larger set of instructions.

Complex design of compiler.

Many addressing modes causing

complex instruction formats.

Few addressing modes, fix instruction

format.

Instruction length is variable. Instruction length varies.

Higher clock cycles per second. Low clock cycle per second.

Emphasis is on hardware. Emphasis is on software.

Control unit implements large instruction

set using micro-program unit.

Each instruction is to be executed by

hardware.

Slower execution, as instructions are to

be read from memory and decoded by

the decoder unit.

Faster execution, as each instruction is to

be executed by hardware.

Pipelining is not possible. Pipelining of instructions is possible,

considering single clock cycle.

Endiannes
Endianness specifies the order which the data is stored in the memory

by processor operations in a multi byte system. Based on Endiannes

processors can be of two types:

Little Endian Processors

Big Endian Processors

Little-endian means lower order data byte is stored in memory at

the lowest address and the higher order data byte at the highest

address. For e.g, 4 byte long integer Byte3, Byte2, Byte1, Byte0 will

be store in the memory as follows:

Big-endian means the higher order data byte is stored in memory at

the lowest and the lower order data byte at the highest address. For

e.g. a 4 byte integer Byte3, Byte2, Byte1, Byte0 will be stored in the

memory as follows:

MICROCONTROLLERS.

A microcontroller is a highly integrated chip that contains a CPU,

scratch pad RAM, special and general purpose register arrays, on chip

ROM/FLASH memory for program storage, timer and interrupt

control units and dedicated I/O ports.

Texas Instrument’s TMS 1000 Is considered as the world’s first

microcontroller.

Some embedded system application require only 8 bit controllers

whereas some requiring superior performance and computational

needs demand 16/32 bit controllers

The instruction set of a microcontroller can be RISC or CISC.

Microcontrollers are designed for either general purpose application

requirement or domain specific application requirement.

Digital Signal Processors
 DSP are powerful special purpose 8/16/32 bit microprocessor

designed to meet the computational demands and power

constraints of today’s embedded audio, video and communication

applications

 DSP are 2 to 3 times faster than general purpose microprocessors

in signal processing applications. This is because of the

architectural difference between DSP and general purpose

microprocessors.

 DSPs implement algorithms in hardware which speed up the

execution where as general purpose processors implement the

algorithm in software and the speed of execution depends

primarily on the clock for the processor.

DSP includes following key units:

Program memory: It is a memory for storing the

program required by DSP to process the data.

Data memory: It is a working memory for storing temporary

variables and data/signal to be processed.

Computational engine: It performs the signal processing in

accordance with the stored program memory computational engine

incorporated many specialized arithmetic units and each of them operates

simultaneously to increase the execution speed. It also includes multiple

hardware shifters for shifting operands and saves execution time.

I/O unit: It acts as an interface between the outside world and DSP. It

is responsible for capturing signals to be processed and delivering the

processed signals.

Examples: Audio video signal processing, telecommunication and

multimedia applications.

SOP(Sum of Products) calculation, convolution, FFT(Fast Fourier

Transform), DFT(Discrete Fourier Transform), etc are some of the

operation performed by DSP.

Application Specific Integrated Circuits. (ASIC)
 ASICs is a microchip design to perform a specific and unique

applications.

 Because of using single chip to integrate several functions there by

reduces the system development cost.

Most of the ASICs are proprietary (which having some trade name)

products, it is referred as Application Specific Standard

Products(ASSP)

 As a single chip ASIC consumes a very small area in the total system.

Thereby helps in the design of smaller system with high capabilities or

functionalities.

 The developers of such chips may not be interested in revealing the

internal detail of it .

Programmable logic devices(PLD’s)
 A PLD is an electronic component. It used to build digital circuits

which are reconfigurable.

A logic gate has a fixed function but a PLD does not have a

defined function at the time of manufacture.

PLDs offer customers a wide range of logic capacity, features,

speed, voltage characteristics.

 PLDs can be reconfigured to perform any number of functions at

any time.

A variety of tools are available for the designers of PLDs which

are inexpensive and help to develop, simulate and test the designs.

 PLDs having following two major types.

1) CPLD(Complex Programmable Logic Device):
CPLDs offer much smaller amount of logic up to 1000 gates.

2) FPGAs(Field Programmable Gate Arrays):
It offers highest amount of performance as well as highest logic

density, the most features.

Advantages of PLDs :-
 PLDs offer customer much more flexibility during the design cycle.

 PLDs do not require long lead times for prototypes or production parts

because PLDs are

 already on a distributors shelf and ready for shipment.

 PLDs can be reprogrammed even after a piece of equipment is shipped

to a customer

Commercial off-the-shelf components(COTs)
 A Commercial off the Shelf product is one which is used 'as-is'.

 The COTS components itself may be develop around a general

purpose or domain specific processor or an ASICs or a PLDs.

 The major advantage of using COTS is that they are readily available

in the market, are chip and a developer can cut down his/her

development time to a great extent

 The major drawback of using COTS components in embedded design

is that the manufacturer of the COTS component may withdraw the

product or discontinue the production of the COTS at any time if rapid

change in technology occurs.

Advantages of COTS:
Ready to use

Easy to integrate

Reduces development time

Disadvantages of COTS:

 No operational or manufacturing standard (all proprietary)

 Vendor or manufacturer may discontinue production of a particular

COTS product

 EXAMPLE: Hardware units of remote controlled toy car

 control units including RF circuitry

 High performance, high frequency microwave electronics.

MEMORY

Memory is an important part of processor/controller based embedded

system.Some of the processors/controllers contains built in memory

and this memory is referred as on-chip memory and off-chip memory.

1. Random Access Memory (RAM)
It is also called as read write memory or the main memory or the primary memory.

The programs and data that the CPU requires during execution of a program are

stored in this memory. It is a volatile memory as the data loses when the power is

turned off.

RAM is further classified into two types- SRAM (Static Random Access

Memory) and DRAM (Dynamic Random Access Memory).

2. Read Only Memory (ROM)

 Stores crucial information essential to operate the system, like the

program essential to boot the computer. It is not volatile. Always

retains its data.

 Used in embedded systems or where the programming needs no

change.

 Used in calculators and peripheral devices.

 ROM is further classified into 4 types- ROM, PROM, EPROM,

and EEPROM.

Types of Read Only Memory (ROM)
PROM (Programmable read-only memory) – It can be

programmed by user. Once programmed, the data and instructions in

it cannot be changed.

EPROM (Erasable Programmable read only memory) – It can be

reprogrammed. To erase data from it, expose it to ultra violet light. To

reprogram it, erase all the previous data.

EEPROM (Electrically erasable programmable read only

memory) – The data can be erased by applying electric field, no need

of ultra violet light. We can erase only portions of the chip.

MEMORY SHADOWING

 A technique used to increase a computer's speed by using high-

speed RAM memory in place of slower ROM memory (RAM is

about three times as fast as ROM).

 On PCs, for example, all code to control hardware devices, such

as keyboards, is normally executed in a special ROM chip called

the BIOS ROM.

 However, this chip is slower than the general-purpose RAM that

comprises main memory.

Many PC manufacturers, therefore, configure their PCs

to copy the BIOS code into RAM when the computer boots.

 The RAM used to hold the BIOS code is called shadow RAM.

https://www.webopedia.com/TERM/C/computer.html
https://www.webopedia.com/TERM/R/RAM.html
https://www.webopedia.com/TERM/M/memory.html
https://www.webopedia.com/TERM/R/ROM.html
https://www.webopedia.com/TERM/C/code.html
https://www.webopedia.com/TERM/H/hardware.html
https://www.webopedia.com/TERM/D/device.html
https://www.webopedia.com/TERM/K/keyboard.html
https://www.webopedia.com/TERM/E/execute.html
https://www.webopedia.com/TERM/C/chip.html
https://www.webopedia.com/TERM/B/BIOS.html
https://www.webopedia.com/TERM/M/main_memory.html
https://www.webopedia.com/TERM/C/copy.html
https://www.webopedia.com/TERM/B/boot.html

Memory Selection
 Selection of suitable memory is very much essential step in high

performance applications,

 because the challenges and limitations of the system performance

are often decided upon the type of memory architecture.

 Systems memory requirement depend primarily on the nature of

the application that is planned to run on the system.

Memory performance and capacity requirement for low cost

systems are small whereas memory throughput can be the most

critical requirement in a complex, high performance system.

 Following are the factors that are to be considered while selecting

the memory devices,

 Speed

 Data storage size and capacity

 Bus width

 Latency

 Power consumption

 Cost

SENSORS & ACTUATORS
Sensor

 A Sensor is used for taking Input. It is a transducer that converts

energy from one form to another for any measurement or control

purpose. Ex. Temperature sensor

 Actuator Actuator is used for output. It is a transducer that may

be either mechanical or electrical which converts signal to

corresponding physical actions. Ex. LED (Light Emitting Diode)

 LED is a p-n junction diode and contains a CATHODE and

ANODE For functioning the anode is connected to +ve end of

power supply and cathode is connected to –ve end of power

supply. The maximum current flowing through the LED is limited

by connecting a RESISTOR in series between the power supply

and LED.

 There are two ways to interface an LED to

microprocessor/microcontroller:

 The Anode of LED is connected to the port pin and cathode to

Ground : In this approach the port pin sources the current to the LED

when it is at logic high.

 The Cathode of LED is connected to the port pin and Anode to

Vcc : In this approach the port pin sources the current to the LED

when it is at logic low. Here the port pin sinks the current and the

LED is turned ON when the port pin is at Logic low .

COMMUNICATION INTERFACES
For any embedded system, the communication interfaces can broadly

classified into:

1) On board Communication Interfaces
These are used for internal communication of the embedded system

i.e: communication between different components present on the

system.

Common examples of onboard interfaces are:

 Inter Integrated Circuit (I2C)

 Serial Peripheral Interface (SPI)

 Universal Asynchronous Receiver Transmitter (UART)

 1-Wire Interface

 Parallel Interface commands.

Example :Inter Integrated Circuit (I2C)
 It is synchronous

 Bi-directional, half duplex , two wire serial interface bus

 Developed by Phillips semiconductors in 1980

It comprises of two buses :

 Serial clock –SCL

 Serial Data – SDA

 SCL generates synchronization clock pulses

 SDA transmits data serially across devices

 I2C is a shared bus system to which many devices can be

connected

 Devices connected by I2C can act as either master or slave

 The master device is responsible for controlling communication by

initiating/ terminating data transfer.

 Devices acting as slave wait for commands from the master and

respond to those

SERIAL PERIPHERAL INTERFACE(SPI) BUS
 Communication Protocol Developed By Motorola

 Four Wire Protocol

 Serial Interface

Master-Slave Approach

 Synchronous- Data clocked with Clock Signal

 Data Rate-10mbps

SPI Protocol Specifies 4 Signal Wires.

1. Master Out Slave In (MOSI)

2. Master In Slave Out (MISO)

3. Serial Clock (SCLK)

4. Slave Select (SS)

Advantages

 Full Duplex Communication

 Higher Throughput than I2C

 Not Limited to 8 bit words in case of bit transferring

 Arbitrary choice of message size, content and Purpose

 Low Power

Disadvantages

 Requires more pins than I2C

 No hardware flow control

 No Slave Acknowledgement

Multi Master Difficult to Implement

 Short Distance

How Do They Communicate

 Communication Initiated by Master only

Master Configures the clock – Frequency less than equal to maximum

frequency Slave Support

Master Selects Slave – By Pulling chip select(SS) of particular Slave-

peripheral to Low State

SOME OTHER COMMUNICATION INTERFACE

1. UART

2. 1-WIRE INTERFACE

3. PARALLEL INTERFACE

2)External or Peripheral Communication Interfaces

These are used for external communication of the embedded system

i.e: communication of different components present on the system

with external or peripheral components/devices.

Common examples of external interfaces are:

RS-232 C & RS-485,Universal Serial Bus (USB),

IEEE 1394 (Firewire),Infrared (IrDA), Bluetooth, Wi-Fi,

Zig -Bee, General Packet Radio Service (GPRS)

Example: RS-232 C & RS-485
It is wired, asynchronous, serial, full duplex communication

RS 232 interface was developed by EIA (Electronic Industries

Associates) In early 1960s

RS 232 is the extension to UART for external communications

RS-232 logic levels use:+3 to +25 volts to signify a "Space" (Logic 0)

and-3 to -25 volts to signify a "Mark" (logic 1).RS 232 supports two

different types of connectors :

RS 232 interface is a point to point communication interface and the

devices involved are called as Data Terminating Equipment (DTE)

And Data Communications Equipment (DCE).Embedded devices

contain UART for serial transmission and generate signal levels as per

TTL/CMOS logic.

DB 9 and DB 25 as shown in figure below

A level translator IC (like Max 232) is used for converting the signal

lines from. UART to RS 232 signal lines for communication. The

vice versa is performed on the receiving side. Converter chips contain

converters for both transmitters and receivers

RS 232 is used only for point to point connections

It is susceptible to noise and hence is limited to short distances only

RS 422 is another serial interface from EIA.

It supports multipoint connections with 1 transmitter and 10

receivers.

It supports data rates up to 100Kbps and distance up to 400 ft

RS 485 is enhanced version of RS 422 and supports up to 32

transmitters and 32Receivers.

EMBEDDED FIRMWARE

(UNIT – V)

EMBEDDED FIRMWARE

Embedded firmware
 refers to the control algorithm (Program instructions) and/or the

configuration settings that an embedded system developer dumps

into the code (program) memory of the embedded system.

 It is an un-avoidable part of an embedded system.

 There are various methods available for developing the embedded

firmware. They are listed below:

1.Write the program in high level languages like Embedded C/C++

using an Integrated Development Environment.

 The IDE contains an editor, compiler, linker, debugger, simulator,

etc.

 IDEs are different for different family of processors/controllers.

For example, keil micro vision3 IDE is used for all family

members of 8051 microcontroller, Since it contains the generic

8051 compiler C51.

 2. Write the program in Assembly language using the instructions

supported by your application’s target processor/controller

 The instruction set for each family of processor/controller is different

and the program written in either of the methods given above should

be converted into a processor understandable machine code before

loading it into the program memory.

 The process of converting the program written in either a high level

language or processor/controller specific Assembly code to machine

readable binary code is called ‘HEX File Creation’.

 If the program is written in Embedded C/C++ using an IDE, the cross

compiler included in the IDE converts it into corresponding

processor/controller understandable ‘HEX File’.

 If you are following the Assembly language based programming

technique, you can use the utilities supplied by the

processor/controller vendors to convert the source code into ‘HEX

File’.

 Also third party tools are available, which may be free of cost, for this

conversion.

The other system components refer to the components/circuits/ICs

which are necessary for the proper functioning of the embedded system.

1) Reset Circuit

2) Brown-out Protection Circuit

3) Oscillator Unit

4) Real- Time Clock (RTC)

5) Watchdog Timer are examples of circuits/ICs which are essential for

the proper functioning of the processor/controllers.

The reset circuit

 is essential to ensure that the device is not operating at a voltage level

where the device is not guaranteed to operate, during system power

ON. The reset signal brings the internal registers and the different

hardware systems of the processor/controller to a known state and

starts the firmware execution from the reset vector

 The reset signal can be either active high (The processor undergoes

reset when the reset pin of the processor is at logic high) or active low

(The processor undergoes reset when the reset pin of the processor is

at logic low).

 Since the processor operation is synchronized to a clock signal, the

reset pulse should be wide enough to give time for the clock oscillator

to stabilize before the internal reset state starts.

 Some microprocessors/controllers contain built-in internal reset

circuitry and they don’t require external reset circuitry.

 Figure illustrates a resistor capacitor based passive reset circuit for

active high and low configurations.

 The reset pulse width can be adjusted by changing the resistance value

R and capacitance value C.

RC BASED RESET CIRCUIT

The brown-out protection

circuit prevents the processor/controller from unexpected program

execution behavior when the supply voltage to the

processor/controller falls below a specified voltage.

The Oscillator unit generates clock signals for synchronizing the

operations of the processor.

Real-Time Clock (RTC)
 is a system component responsible for keeping track of time. RTC

holds information like current time (in hours, minutes and seconds) in

12 hour/24 hour format, date, month, year, day of the week, etc. and

supplies timing reference to the system.

 RTC is intended to function even in the absence of power.

 The RTC chip contains a microchip for holding the time and date

related information and backup battery cell for functioning in the

absence of power, in a single IC package.

 The RTC chip is interfaced to the processor or controller of the

embedded system.

 For Operating System based embedded devices, a timing reference is

essential for synchronizing the operations of the OS kernel

A watchdog
 is to monitor the firmware execution and reset the system

processor/microcontroller when the program execution hangs up

or generates an Interrupt in case the execution time for a task is

exceeding the maximum allowed limit.

 If the firmware execution doesn’t complete due to malfunctioning,

within the time required by the watchdog to reach the maximum

count, the counter will generate a reset pulse and this will reset the

processor (if it is connected to the reset line of the processor).

 Most of the processors implement watchdog as a built-in

component and provides status register to control the watchdog

timer (like enabling and disabling watchdog functioning) and

watchdog timer register for writing the count value.

 If the processor/controller doesn’t contain a built in watchdog

timer, the same can be implemented using an external watchdog

timer IC circuit.

EMBEDDED FIRMWARE DESIGN APPROACH

 The firmware design approach for embedded product is purely

dependent on the complexity of the functions to be performed etc.

Two basic approaches are used for embedded firmware design.

1) Conventional procedural based firmware design. (Super loop model)

2) Operating system based design.

THE SUPER LOOP BASED APPROACH

 The super loop based firmware development approach is adopted for

applications that are not time critical and where the response time is

not so important.

 It is similar to a conventional procedural programming where the

code is executed task by task.

 The task listed at the top of the program code is executed first and the

task below the top are executed after completing the first task.

 In a multiple task based system, each task is executed in serial in

this approach. The execution flow for this will be.

1) Configure the common parameters and perform initialisation for

various hardware components memory, registers,etc.

2) Start the first task and execute it

3) Execute the second task

4) Execute the next task

5) :

6) :

7) Execute the last defined task

8) Jump back to the first task and fallow the same task

 Almost all tasks in embedded application are non-ending and are

repeated infinitely throughout the operation.

 This repetition is achieved by using an infinite loop like

WHILE(1) {} loop.

 Since the tasks are running inside the loop, the only way to come

out of the loop is either a hardware reset or an interrupt assertion.

 The super loop based design doesn’t require an operating system.

 This type of design is deployed in low cost embedded products

and products where response time is not critical.

 The major drawback of this approach is that any failure in any

part of a single task will affect the total system.

 If the program hangs up at some point while executing a task

 It will remain there forever and ultimately the product stops

functioning.

 Another major drawback of the super loop design approach is the

lack of real timeliness.

 If the number of tasks to be executed within the application

increases, the time at which each task is repeated also increases.

THE EMBEDDED OPERATING SYSTEM BASED

APPROACH

 The operating system based approach contains operating system,

which can be either GPOS or RTOS to host the user written

application firmware.

 GPOS based design is very similar to a conventional PC based

application development where the device contains an

OS(Windows/Unix/Linux, etc for desktop PCs) and you will be

creating and running user application on top of it.

 OS based applications also requires DRIVER SOFTWARE for

different hardware present on the board to communicate with them.

 RTOS based design approach is employed in embedded products

demanding real time response.

 RTOS responds in a timely and predictable manner to events.

 RTOS contains a real time kernel responsible for performing pre-

emptive multitasking, scheduler for scheduling tasks, multiple threads

etc.

 A RTOS allows flexible scheduling of system resources like the CPU

and memory and offers some way to communicate between tasks.

Some examples of RTOS are,

 Windows CE, pSOS, VxWorks , ThreadX, MicroC/OS-II, Embedded

Linux, Symbian etc.

 Most of the mobile phones are built around the popular RTOS

Symbian

EMBEDDED FIRMWARE DEVELPOMENT LANGUAGE

 You can use either a target processor/controller specific language

(generally known as Assembly language or low level language).

 A target processor/controller independent language like C, C++,

JAVA, etc. Commonly known as high level languages.

 A combination of Assembly and high level language.

ASSEMBLY TO MACHINE LANGUAGE

CONVERSION PROCESS

LIBRARY

FILE

OBJECT FILE

1

OBJECT FILE

2

LINKER/

LOADER

MODULE

ASSEMBLER

SOURCE FILE

(asm or.src file)

MODULE1

MODULE

ASSEMBLER

SOURCE FILE

(asm or.src file)

MODULE2

ABSOLUTE

OBJECT

FILE

OBJEC TO

HEX FILE

CONVERTER

MACHINE CODE

(HEX FILE)

HIGH LEVEL TO MACHINE LANGUAGE

CONVERSION PROCESS

LIBRARY

FILE

OBJECT FILE

1

OBJECT FILE

2

LINKER/

LOADER

MODULE

CROSS

COMPLIER

SOURCE FILE

(.C or .C++ etc)

MODULE 1

OBJEC TO

HEX FILE

CONVERTER

MODULE

CROSS

COMPLIER

SOURCE FILE

(.C or .C++ etc)

MODULE 2

ABSOLUTE

OBJECT FILE

MACHINE CODE

(HEX FILE)

