
INTRODUCTION TO MICROPROCESSOR

UNIT-1

M. A. HIMAYATH SHAMSHI (ASSOC.PROF)

DEPARTMENT OF ECE

VAAGDEVI COLLEGE OF ENGINEERING

Microprocessor - Overveiw
Microprocessor is a controlling unit of a micro-computer, fabricated on a small chip capable of

performing ALU (Arithmetic Logical Unit) operations and communicating with the other

devices connected to it.

Block Diagram Of Basic Micro Computer

How does a Microprocessor Work?
 The microprocessor follows a sequence: Fetch, Decode, and then Execute.

 Initially, the instructions are stored in the memory in a sequential order. The microprocessor

fetches those instructions from the memory, then decodes it and executes those instructions

till STOP instruction is reached. Later, it sends the result in binary to the output port.

Between these processes, the register stores the temporarily data and ALU performs the

computing functions.

List of Terms Used in a Microprocessor

Instruction Set − It is the set of instructions that the microprocessor can understand.

Bandwidth − It is the number of bits processed in a single instruction.

Clock Speed − It determines the number of operations per second the processor can perform. It

is expressed in megahertz (MHz) or gigahertz (GHz).It is also known as Clock Rate.

Word Length − It depends upon the width of internal data bus, registers, ALU, etc. An 8-bit

microprocessor can process 8-bit data at a time. The word length ranges from 4 bits to 64 bits

depending upon the type of the microcomputer.

Data Types − The microprocessor has multiple data type formats like binary, BCD, ASCII,

signed and unsigned numbers.

Features of a Microprocessor

•Cost-effective − The microprocessor chips are available at low prices and results its low cost.

•Size − The microprocessor is of small size chip, hence is portable.

•Low Power Consumption − Microprocessors are manufactured by using metal oxide

semiconductor technology, which has low power consumption.

•Versatility − The microprocessors are versatile as we can use the same chip in a number of

applications by configuring the software program.

•Reliability − The failure rate of an IC in microprocessors is very low, hence it is reliable.

Microprocessor - Classification

Characteristics of RISC

The major characteristics of a RISC processor are as follows −

• It consists of simple instructions.

• It supports various data-type formats.

• It utilizes simple addressing modes and fixed length instructions for pipelining.

• It supports register to use in any context.

• One cycle execution time.

• “LOAD” and “STORE” instructions are used to access the memory location.

• It consists of larger number of registers.

• It consists of less number of transistors.

Characteristics of CISC

• Variety of addressing modes.

• Larger number of instructions.

• Variable length of instruction formats.

• Several cycles may be required to execute one instruction.

• Instruction-decoding logic is complex.

• One instruction is required to support multiple addressing modes.

Special Processors

These are the processors which are designed for some special purposes. Few of the special

processors are briefly discussed −

Coprocessor

A coprocessor is a specially designed microprocessor, which can handle its particular function

many times faster than the ordinary microprocessor.

For example − Math Coprocessor.

Some Intel math-coprocessors are −

• 8087-used with 8086

• 80287-used with 80286

• 80387-used with 80386

Input/Output Processor

It is a specially designed microprocessor having a local memory of its own, which is used to

control I/O devices with minimum CPU involvement.

For example −

• DMA (direct Memory Access) controller

• Keyboard/mouse controller

• Graphic display controller

• SCSI port controller

Transputer (Transistor Computer)

A transputer is a specially designed microprocessor with its own local memory and having links

to connect one transputer to another transputer for inter-processor communications. It was first

designed in 1980 by In mos and is targeted to the utilization of VLSI technology.

A transputer can be used as a single processor system or can be connected to external links,

which reduces the construction cost and increases the performance

For example − 16-bit T212, 32-bit T425, the floating point (T800, T805 & T9000) processors.

DSP (Digital Signal Processor)

This processor is specially designed to process the analog signals into a digital form. This is done by

sampling the voltage level at regular time intervals and converting the voltage at that instant into a

digital form. This process is performed by a circuit called an analogue to digital converter, A to D

converter or ADC.

A DSP contains the following components −

• Program Memory − It stores the programs that DSP will use to process data.

• Data Memory − It stores the information to be processed.

• Compute Engine − It performs the mathematical processing, accessing the program from the

program memory and the data from the data memory.

Input/Output − It connects to the outside world.

Its applications are −

• Sound and music synthesis,

• Audio and video compression

• Video signal processing

• 2D and 3d graphics acceleration.

For example − Texas Instrument’s TMS 320 series, e.g., TMS 320C40, TMS320C50.

Overview Of Microprocessor - 8085 Architecture

8085 is pronounced as "eighty-eighty-five" microprocessor. It is an 8-bit microprocessor designed

by Intel in 1977 using NMOS technology.

It has the following configuration −

• 8-bit data bus

• 16-bit address bus, which can address up to 64KB

• A 16-bit program counter

• A 16-bit stack pointer

• Six 8-bit registers arranged in pairs: BC, DE, HL

• Requires +5V supply to operate at 3.2 MHZ single

phase clock

• It is used in washing machines, microwave ovens

mobile phones, etc.

Microprocessor - 8086 Overview
8086 Microprocessor is an enhanced version of 8085Microprocessor that was designed by Intel in 1976.

It is a 16-bit Microprocessor having 20 address lines and16 data lines that provides up to 1MB storage. It

consists of powerful instruction set, which provides operations like multiplication and division easily.

It supports two modes of operation, i.e. Maximum mode and Minimum mode. Maximum mode is

suitable for system having multiple processors and Minimum mode is suitable for system having a single

processor.

Features of 8086

•It has an instruction queue, which is capable of storing six instruction bytes from the memory resulting

in faster processing.

•It was the first 16-bit processor having 16-bit ALU, 16-bit registers, internal data bus, and 16-bit

external data bus resulting in faster processing.

•It is available in 3 versions based on the frequency of operation −

• 8086 → 5MHz

• 8086-2 → 8MHz

• (c)8086-1 → 10 MHz

•It uses two stages of pipelining, i.e. Fetch Stage and Execute Stage, which improves performance.

•Fetch stage can prefetch up to 6 bytes of instructions and stores them in the queue.

•Execute stage executes these instructions , It has 256 vectored interrupts.

•It consists of 29,000 transistors.

• EU (Execution Unit)

Execution unit gives instructions to BIU stating from where to fetch the data and then decode and

execute those instructions. Its function is to control operations on data using the instruction

decoder & ALU. EU has no direct connection with system buses as shown in the above figure, it

performs operations over data through BIU.

• BIU (Bus Interface Unit)

BIU takes care of all data and addresses transfers on the buses for the EU like sending addresses,

fetching instructions from the memory, reading data from the ports and the memory as well as

writing data to the ports and the memory. EU has no direction connection with System Buses so

this is possible with the BIU. EU and BIU are connected with the Internal Bus.

• Flag Register of 8086

Microprocessor – 8086Memory Organization
• Operating frequency of

8086 is 5MHZ

• Memory Capacity is

1MB

• Address Bus Capacity is

20 bits

• Data Bus Capacity is 16

bits

• Operating Voltage is 5V

to 12V

Advantages of the Segmentation The main advantages of segmentation are as follows:

• It provides a powerful memory management mechanism.

• Data related or stack related operations can be performed in different segments.

• Code related operation can be done in separate code segments.

• It allows to processes to easily share data.

• It allows to extend the address ability of the processor, i.e. segmentation allows the use of 16

bit registers to give an addressing capability of 1 Megabytes. Without segmentation, it would

require 20 bit registers.

• It is possible to enhance the memory size of code data or stack segments beyond 64 KB by

allotting more than one segment for each area.

Instruction QUEUE

BIU contains the instruction queue. BIU gets

upto 6 bytes of next instructions and stores

them in the instruction queue. When EU

executes instructions and is ready for its next

instruction, then it simply reads the instruction

from this instruction queue resulting in

increased execution speed.

Minimum Mode of 8086 Microprocessor

Maximum Mode of 8086 Microprocessor

Pin Diagram of 8086 Microprocessor

Unit II

Assembly language of 8086

Addressing modes of 8086

1) Immediate addressing mode

2) Register addressing mode

3) Direct memory addressing mode

4) Register based indirect addressing mode

5) Register relative addressing mode

6) Base indexed addressing mode

7) Relative based indexed addressing mode

8) Implied addressing mode

 Immediate addressing mode: In this mode, the operand is specified in the

instruction itself. Instructions are longer but the operands are easily identified.

Example: MOV CL, 12H ,

MOV AX,1025H

Register addressing mode: In this mode, operands are specified using registers.

This addressing mode is normally preferred because the instructions are compact

and fastest executing of all instruction forms.

Registers may be used as source operands, destination operands or both. •

Example: MOV AX, BX ,This instruction copies the contents of BX register into

AX register. AX ← BX

Direct memory addressing mode : In this mode, address of the operand is

directly specified in the instruction. Here only the offset address is specified.

Example: MOV CL, [4321H] ,This instruction moves data from location 4321H in

the data segment into CL.

The physical address is calculated as DS * 10H + 4321,Assume DS = 5000H

PA = 50000 + 4321 = 54321H : CL ← [54321H]

Example : MOV BX,[5689H]

Register based indirect addressing mode : In this mode, the effective address of

the memory may be taken directly from one of the base register or index register

specified by instruction.

If register is SI, DI and BX then DS is by default segment register. • If BP is used,

then SS is by default segment register.

Example: MOV CX, [BX] This instruction moves a word from the address pointed

by BX and BX + 1 in data segment into CL and CH respectively.

CL ← DS: [BX] and CH ← DS: [BX + 1]

Physical address can be calculated as DS * 10H + BX.

Register relative addressing mode: In this mode, the operand address is

calculated using one of the base registers and an 8 bit or a 16 bit displacement. •

Example: MOV CL, [BX + 04H]

This instruction moves a byte from the address pointed by BX + 4 in data segment

to CL. CL ← DS: [BX + 04H] • Physical address can be calculated as DS * 10H +

BX + 4H.

Base indexed addressing mode: Here, operand address is calculated as base

register plus an index register.

Example: • MOV CL, [BX + SI] ,This instruction moves a byte from the address

pointed by BX + SI in data segment to CL.

CL ← DS: [BX + SI] • Physical address can be calculated as DS * 10H + BX + SI.

Example : MOV AX, [SI+BX]

Relative based indexed addressing mode :In this mode, the address of the

operand is calculated as the sum of base register, index register and 8 bit or 16 bit

displacement.

Example: MOV CL, [BX + DI + 20] ,This instruction moves a byte from the address

pointed by BX + DI + 20H in data segment to CL.

CL ← DS: [BX + DI + 20H]

Physical address can be calculated as DS * 10H + BX + DI + 20H.

MOV AX,[BX+SI+3000H]

Implied addressing mode : In this mode, the operands are implied and are hence

not specified in the instruction.

Example: • STC • This sets the carry flag.

Intra segment Direct: The effective branch address is sum of 8 or 16

bit displacement and the current contents of IP(Instruction Pointer).It

can be used with either conditional or unconditional branching.

Inter segment Indirect: The effective branch address is contents of

register or memory location that is accessed using any of the data

related addressing mode except immediate mode. It can be used only

for unconditional branch instruction.

Intersegment Direct: Replaces the content of IP with part of the

instruction and the contents of CS with another part of the instruction.

This mode is provide a way of branching from one code segment to

another.

Intersegment Indirect: Replaces the contents of IP and CS with the

contents of two consecutive words in memory that are referenced

using any one of the data related addressing mode except immediate

Classification of Instruction Set

1)Data Transfer Instructions

2)Arithmetic Instructions

3)Bit Manipulation Instructions

4)Program Execution Transfer Instructions

5)String Instructions

6)Processor Control Instructions

IN and OUT

InstructionsThe data present in the input port is transferred to accumulator and its

address is present in the DX register given in the operand.

The data of the input port is moved to the accumulator whose memory

address is given in the instruction.

The data in the accumulator is moved to the output port whose address is

specified in the DX register.

The data in the accumulator is moved to the port whose address is given in

the instruction.

The lower byte of the data of the flag register is moved to the higher byte

register of the accumulator.

It moves the data in the higher byte of flag register to the lower byte flag

register.

if low nibble of AL > 9 or AF = 1 then: AL = AL + 6

if AL > 9Fh or CF = 1 then: AL = AL + 60h

An assembler is a program that is used to convert an assembly language

program into an equivalent machine language program.

The assembler finds the address of each label and substitutes the value of

each constant and variable in the assembly language program during the

assembly process, to generate the machine language code.

While performing these operations, the assembler may find syntax errors.

They are reported to the programmer at the end of the assembly process.

The logical and other programming errors are not found by the assembler.

For completing these tasks the assembler needs some commands from the

programmer .The required storage class for a particular constant or a

variable such as byte, word, or double word,

The logical name of the segments such as CODE, STACK, or DATA, the

type of procedures or routines such as FAR, NEAR, PUBLIC, or EXTRN,

the end of a segment etc.

These types of commands are given to the assembler using a predefined

alphabetical strings called Assembler directives.

Assembler directives are directions for the assembler, and not the

instructions for the 8086.

Assembler directives

 Assembler Directives for variable and Constant Definition

 (i) DB, DW, DD, DQ, and DT:

 DB (define byte),DW(define word),DD(define double word), DQ (define

quad word), and DT (define ten bytes) are used to reserve one byte, one

word (i.e. 2 bytes), one double word(i.e. 2 words), one quad word(i.e. 4

words) and ten bytes in memory, respectively for storing constants,

variables, or strings.

 Example:DATA1 DB 20h ; Reserve one byte for storing DATA1and assign

the value 20h to it.

 ARRAY DB 10h, 20h, 30h ; Reserve three bytes for storing ARRAY and

initialize it with the values ; 10h, 20h and 30h

 CITY DB “NARELA” ;Store the ASCII code of the characters specified

within double quotes in the array or a list named CITY

 DATA2 DW 1020h ; Reserve one word for storing DATA2 and Assign the

value 1020 to it.

The directive DUP (duplicate) is used to reserve a series of bytes, words,

double words, or ten bytes and is used with DB, DW, DD and DT,

respectively.

The reserved area can be either filled with a specific value or left

uninitialized.

Example:ARRAY DB 20 DUP(0) ;Reserve 20 bytes in the memory ; for

the array named ARRAY and initialize all the elements of the array to 0

(due to presence of 0 within the bracket near the DUP

ARRAY1 DB 25 DUP (?) ; Reserve 25 bytes in the memory for the array

named ARRAY1 and keep all the elements of the array uninitialized (due

to the question mark present within the bracket near the DUP

ARRAY2 DB 50 DUP (64h) ; Reserves 50 bytes in the memory for the

array named ARRAY2 and initializes all the elements of the array to 64h.

 EQU: The directive EQU(equivalent) is used to assign a value to a data

name Example: NUMBER EQU 50h ; Assign the value 50h to NUMBER.

NAME EQU “RAMESH” ; Assign the string “RAMESH” to NAME

Assembler Directives Related to Code(Program) Location: (i) ORG:

The ORG (origin) directive directs the assembler to start the memory

allocation for a particular segment (data, code, or stack) form the declared

offset address in the ORG statement. While starting the assembly process

for a memory segment, the assembler initializes a location counter (LC) to

 When the ORG directive is not mentioned , LC is initialized with the offset

address 0000h.

When the ORG directive is mentioned at the beginning of the statement,

LC is initialized with the offset address specified in the ORG directive.

Example: ORG 100h When this directive is placed at the beginning of the

code segment, the location counter is initialized with 0100h and the first

instruction is stored from the offset address 0100h within the code

segment.

If it is placed in the data segment, the next data storage starts from the

offset address 0100h within the data segment.

(ii) EVEN: The EVEN directive updates the location counter to next even

address, if the current location counter content is not an even number.

Example: ARRAY2 DW 20 DUP (0) These statements in a segment

declare an array named ARRAY2 having 20 words, starting at an even

address.

The advantage of storing an array of words starting at an even address is

that the 8086 takes just one memory read/write cycle to read/write the

entire word

Otherwise the 8086 takes two memory read/write cycles to read/write to the

word.

Example: EVEN

RESULT PROC NEAR

:

: Instruction in Result Procedure

:

RESULT ENDP

Here the procedure RESULT, which is of type NEAR, is stored starting at an

even address in the code segment. The ENDP directive indicates the end of

the RESULT procedure.
(iii) LENGTH: This directive is used to determine the length of an array or

string in bytes.

Example: MOV CX, LENGTH ARRAY CX is loaded with the number of bytes

in the ARRAY.

(iv) OFFSET: This operator is used to determine the offset of a data item in a

segment containing it.

Example: MOV BX, OFFSET TABLE

If the data item named TABLE is present in the data segment, this statement

places the offset address of TABLE, in the BX register.

Assembler Directives for Segment Declaration

(i) SEGMENT and ENDS: The SEGMENT and ENDS directives indicate the

start and end of a segment, respectively. In some cases, the segment may

be assigned a type such as PUBLIC (i.e. it can be used by other modules of

the program while linking) or GLOBAL (i.e. it can be accessed by any other

module).

Example: This example indicates the declaration of a code segment named

CODE 1. CODE 1 SEGMENT

: Instructions of CODE 1 segment

CODE 1 ENDS

(ii) ASSUME: The ASSUME directive is used to inform the assembler, the

name of the logical segments to be assumed for different segments used in

the program.

This statement informs the assembler that the segment address where the

logical segments CODE1 and DATA1 are loaded in memory during execution

is to be stored in CS and DS registers, respectively.

ASSUME CS : CODE 1, DS: DATA1

(iii) GROUP: This directive is used to form a logical group of segments with a

similar purpose. The Assembler passes information to the linker/loader to

form the code, such that the group declared segments or operands lie within

a 64 Kb memory segment. All such segments can be addressed using the

same segment address.

Example: This statement directs the loader/linker to prepare an executable

file (.exe) such that the CODE1, DATA1, and STACK1 segments lie within a

64KB memory segment that is named

PROGRAM1 GROUP CODE1, DATA1, STACK1

The Assembler directives for declaring procedures:

(i) PROC : The PROC directive indicates the start of a named procedure.

The NEAR and FAR directive specify the type of the procedure:

Example: This statement indicates the beginning of a procedure named

SQUARE_ROOT, which is to be called by a program located in the same

segment. The FAR directive is used for procedures to be called by the

programs present in code segments other than the one in which this

procedure is present.

For example, SALARY PROC FAR indicates the beginning of a FAR type

procedure named SALARY

SQUARE_ROOT PROC NEAR

(ii) ENDP: The ENDP directive is used to indicate the end of a procedure. To

mark the end of a particular procedure, the name of the procedure may

appear as prefix with the directive ENDP.

Example: SALARY PROC NEAR

…… ; Code of SALARY

Procedure

SALARY ENDP

(iii) EXTRN and PUBLIC: The directive EXTRN (external) informs the

assembler that the procedures, label/labels, and names declared after this

directive has/have already been defined in some other segments and in the

segments where they actually appear, they must be declared in public, using

the PUBLIC directive.

Example: MODULE1 SEGMENT

PUBLIC SQURE_ROOT

SQUARE_ROOT PROC FAR

…. ;CODE OF SQUARE_ROOT

PROCEDURE

SQUARE_ROOT ENDP

MODULE1 ENDS ;

iii) EXTRN and PUBLIC (continued): NOTE: If one wants to call the

procedure named SQUARE_ROOT appearing in MODULE1 from MODULE2,

it must be declared using the statement PUBLIC SQUARE_ROOT in

MODULE1 and it must be declared external using the statement EXTRN

SQUARE_ROOT in MODULE2. If a jump or a call address is external, it must

be represented as NEAR or FAR. If data are defined as external, their size

must be represented as BYTE, WORD, or DWORD. MODULE2

SEGMENT

EXTRN SQUARE_ROOT FAR

…… ; CODE OF MODULE2

CALL SQUARE_ROOT

MACRO and ENDM

 Suppose a number of instructions occur repeatedly in the main program,

the program listing becomes lengthy.

 In such a situation, a macro definition, i.e. a label, is assigned with the

repeatedly appearing string of instructions.

 The process of assigning a label or macro name to the repeatedly

appearing string of instructions is called macro definition.

 The macro name is then used throughout the main program to refer to that

string of instructions.

 Defining a MACRO

 CALCULATE MACRO

 MOV AX, [BX]

 ADD AX, [BX + 2]

 MOV [SI], AX

 ENDM

CALCULATE is the macro name and the macro is used to add two

successive data in the memory, whose offset address is present in BX and the

result is stored in the memory at the offset address in SI.

Using parameters in macro definition, the programmer specifies the

parameters of the macro that are likely to be changed each time the macro is

called. The macro given before (CALCULATE) can be modified to calculate

the result for the different sets of data and store it in a different memory

locations as follows:

CALCULATE MACRO OPERAND, RESULT

MOV BX, OFFSET OPERAND

MOV AX, [BX]

ADD AX, [BX + 2]

MOV SI, OFFSET RESULT

MOV [SI], AX

ENDM

Example: Program to find the average of 10 byte-type data stored in an

array in data segment.

ASSUME CS: CODE1, DS: DATA1

DATA1 SEGMENT ;data segment ; starts

ARRAY DB 12h, 23h, 44h, 56h,

0ABh, 73h, 44h, 0ABh,

0EEh, 0Ah ; 10 bytes are stored

COUNT EQU 10 ;Count is the number of bytes in the

array

AVERAGE DB 01 DUP(0) ;Reserve one byte ; to store the

result

DATA1 ENDS ;data segment ; ends

CODE1 SEGMENT ; Code segment ; starts

START:MOV AX, DATA1 ; Segment address of DATA1 is

moved to AX

MOV DS, AX ;MOV AX contents to DS

MOV SI, OFFSET ARRAY ;Move offset address of ARRAY to

SI

XOR AX, AX ;Clear AX and Carry Flag

MOV BX, 0000h ;Clear BX

MOV CX, COUNT ;Move COUNT to CX

NEXT: MOV BL, [SI] ;Move one byte ; from array into BL

ADD AX, BX ;Add AX and BX

INC SI ;Increment SI to point to next byte

LOOP NEXT ;Repeat Loop NEXT CX times

MOV DH, COUNT ;MOV Count to DH

DIV DH ;Divide AX by CH

MOV AVERAGE, AL ;Store AL contents in AVERAGE

CODE1 ENDS ;Code Segment ends

UNIT3
Interfacing with 8086

Memory interface

Memory interface

8255A - Programmable Peripheral Interface

CS A1 A0 Result

0 0 0 Port A

0 0 1 Port B

0 1 0 Port C

0 1 1 CWR

Read/Write Control Logic

ADC/DAC INTERFACING WITH 8086

ADC 0808/0809 WITH 8086 THROUGH
8255

Assembly language

program of ADC

MOV AL,98H

OUT CWR,AL

MOV AL,02H

OUT PORTB,AL

MOV AL, 00H

OUT PORTCL,AL

MOV AL, 01H

OUT PORTCL,AL

MOV AL,00H

OUT PORTCL, AL

IN AL,PORTCU

CLC

L1:RCL AL, 01H

JNC : L1

IN AL, PORTA

HLT

Ex: Interface ADC0808 with 8086 using 8255 ports.

Use portA of 8255 foe transferring Digital O/P of

ADC to the CPU and portC for control signals.

Assume that an analog I/P is present at I/P2 of the

ADC and a clock input of suitable frequency is

available for ADC. Draw the schematic and write the

required ALP.

Assembly language program of DAC
EX: 8 bit DAC is connected with 8086 through port 90H write an assembly language program to generate

a triangular wave at DAC o/p .

MOV AL,00H

L1: OUT 90H,AL

INC AL

CMP AL,FFH

JNZ :L1

L2: DEC AL

OUT 90H,AL

CMP AL,00H

JNZ : L2

JMP : L1

HLT

EX: Write an ALP to generate a square wave of 3V O/P in a DAC with 8-bit binary I/P and a maximum of

5V output, Assume that the addresses 80H, 82H, 84H, 86H are assigned to PORTA, B,C And CWR

MOV AL,80H DELAY: MOV CX,COUNT

OUT 86H,AL L2: NOP

L1: MOV AL,00H NOP

OUT 80H,AL NOP

CALL : DELAY LOOP:L1

MOV AL,99H RET

OUT 80H,AL

CALL: DELAY

JMP: L1

KEY BAORD INTERFACING

MOV AL,82H

OUT 86H, AL

START: MOV AL,00H }

MOV 80H,AL } clear all rows by sending 00H to PORTA

NEXT: IN AL,82H } obtain status of columns in AL by reading PORTB

AND AL,0FH } mask upper nibble in AL

CMP AL,0FH } compare Al with 0F to identify whether any key is pressed

JZ NEXT } If ZF=1,then no key is pressed; go to location back ,else go to

next step to find the key number which is pressed

CALL : DELAY

MOV BL,00H ; store first key number in row0 (0th key)

MOV AL,FEH ; ground row0 alone by sending FEH to PORTA

OUT 80H,AL

IN AL,82H

AND AL,0FH

CMP AL,0FH

JNZ : FIND

MOV BL,04H

MOV AL,FDH

OUT 80H,AL

IN AL,82H

AND AL,0FH

CMP AL,0FH

JNZ : FIND

MOV AL,08H

MOV AL,FBH

OUT 80H,AL

IN AL,82H

AND AL,0FH

CMP AL,0FH

JNZ :FIND

MOV BL,0CH

MOV AL,F7H

OUT 80H,AL

IN AL,0FH

AND AL,0FH

CMP AL,0FH

JNZ: FIND

JMP: START

MOV CX,COUNT

L1 NOP

NOP

LOOP :L1

RET

FIND : RCR AL,01H

JNC GOT_KEY

INC BL

JMP : FIND

GOT : RET

DATA TRANSFER SCHEMES

There will be several IO and memory devices

connected to transfer data between memory and mp

 No problem for transferring data between MP and

memory since same technology is used in the memory

and MP. Speed of both is compatible.

 Data transfer between the MP and IO devices is

problematic because the Speed of the IO devices and

the speed of MP or memory is mismatch.

To overcome the speed problem we have different

Modes of data Transfer.

NEEDS OF DATA TRANSFER SCHEME

A wide variety of IO devices having wide range of speed and other

different characteristics are available .

A slow responding IO device cannot transfer data when

microprocessor issues instruction for it as it takes some time to get

ready.

 Data codes and formats in peripheral differ from the word format of

in the central processing unit and memory.

Transfers rates of peripherals is usually slower than the transfer rates

of central processing unit.

Operating modes of peripheral are different from each other and each

must be controlled so as not to disturb the operation of each other

peripherals connected to central processing unit .

Modes of data transfer schemes

8251 USART

CONTROL WORDS

INTERRUPT STRUCTURE OF 8086

When the interrupt is activated, these actions take place

Completes the current instruction that is in progress.

Pushes the Flag register values on to the stack.

Pushes the CS (code segment) value and IP (instruction pointer) value

of the return address on to the stack.

IP is loaded from the contents of the word location 00008H.

CS is loaded from the contents of the next word location 0000AH.

Interrupt flag and trap flag are reset to 0.

Hardware interrupt Software interrupts (INT N)

NMI 256 types of software interrupt

INTR TYPE 0 (divide by zero interrupt)

TYPE 1 (single step execution)

TYPE 2 (non-maskable interrupt)

TYPE 3 (break point interrupt)

TYPE 4 (over flow interrupt)

INTERRUPT VECTOR TABLE

ICWS AND OCWS OF 8059

INTRODUCTION TO

8051

Microcontroller

UNIT- IV

Difference between Microprocessor and

Microcontroller

..Microcontroller Microprocessor

Microcontrollers are used to

execute a single task within an

application.

Microprocessors are used for big

applications.

Its designing and hardware cost is

low.

Its designing and hardware cost is high.

Easy to replace. Not so easy to replace.

It is built with CMOS technology,

which requires less power to

operate

Its power consumption is high because it has

to control the entire system

It consists of CPU, RAM, ROM,

I/O ports.

It doesn’t consist of RAM, ROM, I/O ports.

It uses its pins to interface to peripheral

devices.

Common

Microcontrollers

•Atmel

•ARM

•Intel

•8-bit

•8XC42

•MCS48

•MCS51

•8xC251

•16-bit

•MCS96

•MXS296

•National Semiconductor

•COP8

•Microchip

•12-bit instruction PIC

•14-bit instruction PIC

•PIC16F84

•16-bit instruction PIC

•NEC

 Motorola
 8-bit

 68HC05
 68HC08
 68HC11

 16-bit
 68HC12
 68HC16

 32-bit
 683xx

 Texas Instruments
 TMS370, 16/32 bit
 MSP430 , 16 bit

 Zilog
 Z8
 Z86E02

BLOCK DIAGRAM OF 8051

ARCHITECTURE OF 8051

On-Chip DATA Memory: RAM

REGISTER BANKS

PROGRAM STATUS WORD OF 8051

7F 78

1A

10

0F 08

07 06 05 04 03 02 01 00

20h – 2Fh (16 locations X 8-bits = 128 bits)

Bit addressing:

mov C, 1Ah

or

mov C, 23h.2

Bit Addressable Memory

2F

2E

2D

2C

2B

2A

29

28

27

26

25

24

23

22

21

20

Special Function Registers

Addresses 80h – FFh

Direct Addressing

used to access SPRs

DATA registers

CONTROL registers

 Timers

 Serial ports

 Interrupt system

 Analog to Digital

converter

 Digital to Analog

converter

 Etc.

On-Chip Memory: Program/Data

PIN DIAGRAM OF 8051

PORT STRUCTURE

PORT STRUCTURE

PORT STRUCTURE

ADDRESSING MODES OF 8051

1)Immediate addressing mode

MOVA, #0AFH;

MOVR3, #45H;

MOVDPTR, #FE00H;

2)Register addressing mode

MOVA, R5;

MOVR2, #45H;

MOVR0, A;

3) Direct addressing mod

MOV80H, R6;

MOVR2, 45H;

MOVR0, 05H;

4) Indirect addressing mode

MOV0E5H, @R0;

MOV@R1, 80H;

MOVXA, @R1;

MOV@DPTR, A;

5) Indexed addressing mode

MOVCA, @A+PC;
MOVCA, @A+DPTR;

INSTRUCTION SET OF 8051

DATA

TRANSFER

ARITHMETIC LOGICAL BOOLEAN PROGRAM

BRANCHING

MOV ADD ANL CLR LJMP

MOVC ADDC ORL SETB AJMP

MOVX SUBB XRL MOV SJMP

PUSH INC CLR JC JZ

POP DEC CPL JNC JNZ

XCH MUL RL JB CJNE

XCHD DIV RLC JNB DJNZ

DA A RR JBC NOP

RRC ANL LCALL

SWAP ORL ACALL

CPL RET

RETI

JMP

SPECIAL FUNCTION REGISTERS OF 8051

8051 REAL TIME

CONTROL

UNIT- V

A timer is a specialized type of clock which is used to measure time intervals. A

timer that counts from zero upwards for measuring time elapsed is often called

a stopwatch. It is a device that counts down from a specified time interval and

used to generate a time delay, for example, an hourglass is a timer.

A counter is a device that stores (and sometimes displays) the number of times a

particular event or process occurred, with respect to a clock signal. It is used to

count the events happening outside the microcontroller. In electronics, counters

can be implemented quite easily using register-type circuits such as a flip-flop.

DIFFERENCES BETWEEN TIMERS/COUNTERS

Timer Counter

The register incremented for every
machine cycle.

The register is incremented considering 1
to 0 transition at its corresponding to an
external input pin (T0, T1).

Maximum count rate is 1/12 of the
oscillator frequency.

Maximum count rate is 1/24 of the
oscillator frequency.

A timer uses the frequency of the internal
clock, and generates delay.

A counter uses an external signal to count
pulses.

MODES OF TIMERS/COUNTERS

INTERNAL STRUCTURE OF

TIMER/COUNTER

INTERRUPT STRUCTURE OF 8051

External interrupts

1)INT0

2)INT1

Internal interrupts

1)Timer0 (TF0)

2)Timer1(TF1)

Serial communication interrupts

Transmit interrupt (TI)

Receive interrupt (RI)

IE &IP Registers are used to enable and disable these
interrupts.

INTERRUPT PRIORITIES AND VECTOR

ADDRESSES

8051 INTERRUPT STRUCTURE

MODES OF DATA TRANSFER

SCHEMES

SCON REGISTER OF 8051

PROGRAMMING SERIEL

COMMUNICATION INTERRUPTS

Write a program to transfer the message “YES” serially at 9600

baud, 8-bit data, 1 stop bit. Do this continuously.

Program the 8051 to receive bytes of data serially, and put them in PI.

Set the baud rate at 4800, 8-bit data, and 1 stop bit.

PROGRAMMING TIMERS OF 8051

In the following program, we are creating a square wave of 50% duty cycle (with equal portions high and

low) on the PI.5 bit. Timer 0 is used to generate the time delay. Analyze the program.

Assume that XTAL = 11.0592 MHz. What value do we need to load

into the timer’s registers if we want to have a time delay of 5 ms

(milliseconds)? Show the program for Timer 0 to create a pulse

width of 5 ms on P2.3.
Solution:
Since XTAL = 11.0592 MHz,

 the counter counts up every 1.085 us.

This means that out of many 1.085 us intervals we must make a 5

ms pulse.

To get that, we divide one by the other.

We need 5 ms/1.085 us = 4608 clocks.

To achieve that we need to load

 TL and TH with the value 65536 – 4608 = 60928 = EEOOH.

Therefore, we have TH = EE and TL = 00

Assuming that XTAL = 11.0592 MHz, write a program to generate a square wave of 2 kHz

frequency on pin PI .5.

Solution:
1)T = 1 / f = 1 / 2 kHz = 500 us the period of the square wave.

2)1/2 of it for the high and low portions of the pulse is 250 us.

3)250 us / 1.085 us = 230 and 65536 – 230 = 65306. which in hex is FF1AH.

4)TL = 1AH and TH = FFH. all in hex. The program is as follows.

PROGRAMMING EXTERNAL

INTERRUPTS OF 8051

Assume that the INT1 pin is connected to a switch that is normally high. Whenever it goes

low, it should turn on an LED. The LED is connected to PI .3 and is normally off. When it is

turned on it should stay on for a fraction of a second. As long as the switch is pressed low, the

LED should stay on.

Assuming that pin 3.3 (INT1) is connected to a pulse generator, write a program in which the

falling edge of the pulse will send a high to PI.3, which is connected to an LED (or buzzer).

In other words, the LED is turned on and off at the same rate as the pulses are applied to the

INT1 pin.

