INTRODUCTION TO MICROPROCESSOR

UNIT-1
M. &. HIMAYATH SHAMSHI (ASSOC.PROF)
DEPARTMENT OF ECE
VM&DEVI COLLEGE OF E

i



History of Microprocessor
m-

4004 1971
8008 1972
8080 1974
8085 1977
8086 1978
80186 1982
80286 1983
80386 1986
80486 1989

Pentium 1993 onwards
Core solo 2006
Dual Core 2006

Core 2 Duo 2006
Core to Quad 2008
13,i5,i7 2010




Microprocessor - Overveiw

Microprocessor is a controlling unit of a micro-computer, fabricated on a small chip capable of
performing ALU (Arithmetic Logical Unit) operations and communicating with the other
devices connected to it.

Block Diagram Of Basic Micro CompL

/ Microprocessor \

ALU

| Output

P

\

Register Array

Memory
Unit



How does a Microprocessor Work?

» The microprocessor follows a sequence: Fetch, Decode, and then Execute.

> Initially, the instructions are stored in the memory in a sequential order. The microprocessor
fetches those instructions from the memory, then decodes it and executes those instructions
till STOP instruction is reached. Later, it sends the result in binary to the output port.
Between these processes, the register stores the temporarily data and ALU performs the
computing functions.

List of Terms Used in a Microprocessor

Instruction Set — It is the set of instructions that the microprocessor can understand.

Bandwidth — It is the number of bits processed in a single instruction.

Clock Speed — It determines the number of operations per second the processor can perfe

IS expressed in megahertz (MHz) or gigahertz (GHz).It is also known as Clock Rate.

Word Length — It depends upon the width of internal data bus, registers, ALU, etx

microprocessor can process 8-bit data at a time. The word length ranges from

depending upon the type of the microcomputer. o

1 Types — The microprocessor has multiple data type form

1 numbers.

= —

%



Microprocessor

CISC

Processors




Characteristics of RISC
The major characteristics of a RISC processor are as follows —

« It consists of simple instructions.

« It supports various data-type formats.

« It utilizes simple addressing modes and fixed length instructions for pipelining.
* It supports register to use in any context.

* One cycle execution time.

« “LOAD” and “STORE” instructions are used to access the memory location.

It consists of larger number of registers.

» [t consists of less number of transistors.

Characteristics of CISC

« Variety of addressing modes.

« Larger number of instructions.

» Variable length of instruction formats.

Several cycles may be required to execute one instruction.
Istruction-decoding logic is complex.

| ction is required to support multiple addressi




Coprocessor
A coprocessor Is a specially designed microprocessor, which can handle its particular function
many times faster than the ordinary microprocessor.
For example — Math Coprocessor.
Some Intel math-coprocessors are —
« 8087-used with 8086
« 80287-used with 80286
« 80387-used with 80386
Input/Output Processor
It is a specially designed microprocessor having a local memory of its own, which Is used t
control 1/O devices with minimum CPU involvement.
For example —
« DMA (direct Memory Access) controller
« Keyboard/mouse controller
« Graphic display controller
- SCSI port controller
puter (Transistor Computer)
s a specially designed microproce




For example — 16-bit T212, 32-bit T425, the floating point (T800, T805 & T9000) processors.

DSP (Digital Signal Processor)

This processor is specially designed to process the analog signals into a digital form. This is done by

sampling the voltage level at regular time intervals and converting the voltage at that instant into a

digital form. This process is performed by a circuit called an analogue to digital converter, A to D

converter or ADC.

A DSP contains the following components —

* Program Memory — It stores the programs that DSP will use to process data.

« Data Memory — It stores the information to be processed.

« Compute Engine — It performs the mathematical processing, accessing the program frc
program memory and the data from the data memory.

Input/Output — It connects to the outside world.

Its applications are —

Sound and music synthesis,

Audio and video compression

signal processing

graphics acceleration.

4

%



RST RST RST 55
INTR INTA 5.5 6.5 7.5 TRAP

: ' Ll Serial /O
Interrupt control contial

1L

8-Bit Internal Data Bus

fster - | register

~decoder

1z

Accumulator

INOVE
B
D
H

ister select

Re

Address

Buffer

CLK READY Rp ‘Wi ™M H JJ'
RD WR ALE So 10/t HOLD RESET Address Bus

ouT
Ag—A,s Address Bus
ADO _—— AD7

Architecture of 8085 Microprocessor

Electionics Desk]




X1

X2

Reset out
SOD

SID
TRAP
RST7.5
RST6.5
RST3.5
INTR

[a—

[ R — A N S T

Veo

Hold

HLDA
CLK (OUT)
RESETIN
READY
10M

S1
RD
WR




Microprocessor - 8086 Overview

8086 Microprocessor is an enhanced version of 8085Microprocessor that was designed by Intel in 1976.

It is a 16-bit Microprocessor having 20 address lines and16 data lines that provides up to 1MB storage. It
consists of powerful instruction set, which provides operations like multiplication and division easily.

It supports two modes of operation, i.e. Maximum mode and Minimum mode. Maximum mode is
suitable for system having multiple processors and Minimum mode is suitable for system having a single
processor.

Features of 8086

It has an instruction queue, which is capable of storing six instruction bytes from the memory re
In faster processing.

It was the first 16-bit processor having 16-bit ALU, 16-bit registers, internal data bus,
external data bus resulting in faster processing. y

*It Is available in 3 versions based on the frequency of operation —
~+» 8086 — 5MHz

» 8086-2 — 8MHz

0 MHz

%



-
'
'
'
I
)
]
'
¥
L}
'
'
L
1
'
]
L]
L]
'
1
L]
1
1
1
1
-
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
|
1
1
N

To memory and
Input/ Output

PA = Seg X I0OH
+ offset

CS

pre-fetch
queue

Purpose

Registers

‘-------------——-------b------.--‘-—-d

Block Diagram of 8086 Microprocessor

Electronics Desk




Bit1i5 14 13 12 1110 ¢ 8|7 6 5 4 3 2 1 0
H—J Canry flag - set by

U = Undefined carry out of MSB _

Parity flag - set if
rasult has even parnty

Auxiliary carry flag for BCD

Zero flag - set if result =0

Sign flag = MSB of result

Trap flag for single step

Interrupt enable flag

Direction flag for string instruction
Overflow flag

ROR6 flag register format




Four segment registers
In BIU

Physical
addess

FFFFF H

7FFFF H

—p=70000 H

ES 0

CS

5FFFF H

+

Segment registers hold
the upper 16 bits of the
starting addresses of
four memory segments
that 8086 is working with
at any particular time.

»50000 H
3FFFF H

P> 30000 H
2FFFF H

memory

Extra
Segment

Stack
Segment

Code
Segment

Data
Segment

<@— Highest address

-g—Top of Extra Segmet

-— Bottom of Extra Segment
<— Top of Stack Segment

«§— Bottom of Satck Segment

<¢— Top of Code Segment

-¢— Bottom Of Code Segment
-— Top of Data Segment

«@— Bottom of Data Segment




3 instruction
bytes

To EU This instruction is being
executed by EU.

Significance of queue




Physical Address Generation in 8086

» The 20-bit physical address is generated by adding 16-bit contents of a
segment register with an 16-bit offset value (also called Effective Address)
which is stored in a corresponding default register (either in IP, BX, Sl, DI,
BP or SP. Different segments have different default register for offset, for
example IP is default offset register for Code Segment)

BlIU always appends 4 zeros _automatically to the 16-bit address of a segment
register (to make it 20-bit) besause it knows the starting address of a
segment always ends with 4 zeros

Points to a memory Offset Value (16 bits)
location within a

segment

SS Segment Register (16 bits) [N
4

/

BP Upper 16bit of starting
address of a segment
SP
Actual address for
\ Si j memory

N\

Default Registers Assigned to store N
offset values for different segments Physical Address (20 Bits)




< Physical Address Calculation </

- Offset is derived from the combination of
pointer registers, index registers the
Instruction Pointer, and immediate values Segment address
(called displacement)

0000

+ Offset

Memory address

J Examples

CS 8 0
1P+ 4: Z L 4 SP + F F E 0
Instruction 3 8 A B 4 Stac § F F E 0
(code) k
addregbs 1 23 4 0 :;?r

Data 1 2 3 6 2

addr
ess




Example of Physical Address Generation for Data Segment

oH

05CO00H

|

0050

05C50H

05CO0 (|0

Segment Register

Offset 0050

Physical Address 05C50H OFFFFFH

Data is fetched with respect to the DS register which contains starting
or base address

The effective address (EA) or offset is in Sl (default register for DS)

The EA depends on the addressing mode




Minimum Mode of 8086 Microprocessor
.| Reset

T =
| Cik GEN. =
— RDY

8284 I
Reset Clk

RDY

— -

9
Reset Cik Ready l__:EIWRED =
= M
L MINAMX MAO - =
& Y DMUX IORD

\

cs

CSe IORD
) : :
| [

IOWR

z v y v

: CS . cS
Transceivers . ‘
e 74245 :
DIR i




| T4

CLK I
e %

Add/Status X BHE X

Ao —Ase

X A1s—Ao X Valid data D45 — Do
\ /
\ '

DT/R —/ ¥

Fig.1.9(b) Write Cycle Timing Diagram for Minimum Operation




Maximum Mode of 8086 Microprocessor

B =
———— INTA
—_— ese ik l———
Generator - 5, ——— MRDC
— RDY MW TC
Reset Clk RDY S: g2ss = DAV S
% - Controller e OWC
ALE
6§e RAM
ResetCilk RDY - DEN o1/

Di Latches
20r3
74373

I--- o - -




One bus cycle
| Ts | Ts

ALE

S: -8,

Add/Status

Add/Data

MRDC

DT/R

/ \

Memory Read Timing in Maximum Mode




Table 2.2 Bus high enable status MAX
MODE
Indication Voo

Whole Word ADq5

| Upper byte from or to odd address AD15/S3

| Upper byte from or to even address AD17/S4

| None AD1a/Ss

A1/
Operation BHEYS-

1/O read MH/MX

1/O write RD"

Memory read RQ/GTy’

Memory write ROQ'/GT4’
LOCK’

Action >
1

Transreceiver is disabled Sy’

Receive data Q50

051
Transmit data —_—

READY
RESET




Queue Status

No Operation. During the last clock cycle, nothing was
taken from the queue.

First Byte. The byte taken from the queue was the first byte
of the instruction.

 Indication Queue Empty. The queue has been reinitialized as a result
| Alternate Data of the execution of a transfer instruction.

[ Stack Subsequent Byte. The byte taken from the queue was a

subsequent byte of the instruction.

| Code or none
| Data

Queue status codes

CPU Cycles 8288
Command

Interrupt Acknowledge INTA

Read I/O Port IORC
Write 1/0 Port IOWC, AIOWC
Halt None

Instruction Fetch MRDC
MRDC

Read Memory
Write Memory MWTC, AMWC

Passive None

o —

Bus Status Codes



Unit I
Assembly language of 8086



Instruction Format

Format of a typical microprocessor instruction

Op-code Operands

| |

|dentifies the action |dentifies the data to
to be taken be operated

E.g. MOV AX,BX

ADD AX,BX
*Op-code are usually written in the form called mnemonic.
E.g. MOVE > MOV

ADDITION > ADD

INCREASE > INC




Addressing modes of 8086

1) Immediate addressing mode

2) Register addressing mode

3) Direct memory addressing mode

4) Register based indirect addressing mode

5) Register relative addressing mode

6) Base indexed addressing mode

7) Relative based indexed addressing mode

8) Implied addressing mode

» Immediate addressing mode: In this mode, the operand is specified in the
Instruction itself. Instructions are longer but the operands are easily identified.
Example: MOV CL, 12H ,

MOV AX,1025H

» Register addressing mode: In this mode, operands are specified using registers.
This addressing mode is normally preferred because the instructions are compact
and fastest executing of all instruction forms.

» Registers may be used as source operands, destination operands or both. ¢
Example: MOV AX, BX ,This instruction copies the contents of BX register into
AX register. AX «— BX




» Direct memory addressing mode : In this mode, address of the operand is
directly specified in the instruction. Here only the offset address is specified.

Example: MOV CL, [4321H] ,This instruction moves data from location 4321H in

the data segment into CL.

The physical address is calculated as DS * 10H + 4321,Assume DS = 5000H

PA = 50000 + 4321 =54321H : CL « [54321H]

Example : MOV BX,[5689H]

» Register based indirect addressing mode : In this mode, the effective address of
the memory may be taken directly from one of the base register or index register
specified by instruction.

If register 1s SI, DI and BX then DS 1s by default segment register. « If BP 1s used,

then SS is by default segment register.

Example: MOV CX, [BX] This instruction moves a word from the address pointed

by BX and BX + 1 in data segment into CL and CH respectively.

CL < DS: [BX] and CH <« DS: [BX + 1]

Physical address can be calculated as DS * 10H + BX.

» Register relative addressing mode: In this mode, the operand address is
calculated using one of the base registers and an 8 bit or a 16 bit displacement. °
Example: MOV CL, [BX + 04H]

» This instruction moves a byte from the address pointed by BX + 4 in data segment
to CL. CL « DS: [BX + 04H] » Physical address can be calculated as DS * 10H +
BX + 4H.



» Base indexed addressing mode: Here, operand address is calculated as base
register plus an index register.

Example: « MOV CL, [BX + SI] ,This instruction moves a byte from the address

pointed by BX + Sl in data segment to CL.

CL <« DS: [BX + SI] * Physical address can be calculated as DS * 10H + BX + SI.

Example : MOV AX, [SI+BX]

» Relative based indexed addressing mode :In this mode, the address of the
operand is calculated as the sum of base register, index register and 8 bit or 16 bit
displacement.

Example: MOV CL, [BX + DI + 20] ,This instruction moves a byte from the address

pointed by BX + DI + 20H in data segment to CL.

CL <« DS: [BX + DI + 20H]

Physical address can be calculated as DS * 10H + BX + DI + 20H.

MOV AX,[BX+SI+3000H]

» Implied addressing mode : In this mode, the operands are implied and are hence
not specified in the instruction.

Example: « STC ¢ This sets the carry flag.



Intra segment Direct: The effective branch address is sum of 8 or 16
bit displacement and the current contents of IP(Instruction Pointer).It
can be used with either conditional or unconditional branching.

Inter segment Indirect: The effective branch address is contents of
register or memory location that is accessed using any of the data
related addressing mode except immediate mode. It can be used only
for unconditional branch instruction.

Intersegment Direct: Replaces the content of IP with part of the
Instruction and the contents of CS with another part of the instruction.
This mode is provide a way of branching from one code segment to
another.

Intersegment Indirect: Replaces the contents of IP and CS with the

contents of two consecutive words in memory that are referenced
ricina anvy nne nf the AdAata related addracecinAa Mmnde averant immediata



Classification of Instruction Set []

1)Data Transfer Instructions

2)Arithmetic Instructions

3)Bit Manipulation Instructions [

4)Program Execution Transfer Instructions [
5)String Instructions [

6)Processor Control Instructions

Software

= The sequence of commmands used to tell a microcomputer what to
do is called a program,

* Each command in a program is called an instruction

= A program written in machine language is referred to as machine
code

ADD AX, BX

T A

(Opcode) (Destination operand) (Source operand)




Instructions

LABEL: INSTRUCTION ; COMMENT
Address identifier Does not generate any machine code
* Ex. START: MOV AX, BX ; copy BX into AX

* There is a one-to-one relationship between assembly and
machine language instructions

* A compiled machine code implementation of a program
written in a high-level language results in inefficient code

— More machine language instructions than an assembled version of an
equivalent handwritten assembly language program



* Two key benefits of assembly
language programming

— It takes up less memory

— It executes much faster



Applications

* One of the most beneficial uses of
assembly language programming is
real-time applications.

Real time means the task required by the
application must be completed before any other
input to the program that will alter its operation can
occur

For example the device service routine which
controls the operation of the floppy disk drive is a
good example that is usually written in assembly

language
5



* Assembly language not only good for
controlling hardware devices but also
performing pure software operations

- Searching through a large table of data for a special
string of characters

— Code translation from ASCII to EBCDIC
— Table sort routines
- Mathematical routines

Assembly language: perform real-time operations

High-level languages: used to write those parts
that are not time critical



Data Transfer Instructions - MOV

Mnemonic
MOV

Memory

Accumulator

Register
Register
Memory
Register

Memory

Seg reg
Seg reg
Reg 16

Memory

Move

Accumulator

Memory
Register
Memory
Register
Immediate
Immediate
Reg 16
Mem 16
Seg reg
Seg reg

Format Operation Flags affected
Mov D,S (S)=> (D) None

NO MOV

Memory _ Memory
Immediate » Segment Register
Segment Register » Segment Register

Ex:. MOV AL, BL



Data Transfer Instructions - XCHG

Mnemonic

XCHG

Meaning Format Operation Flags affected

Exchange XCHG D,S (S)= (D) None

Accumulator Reg 16

Memory

Register
Register

Example: XCHG START [BX]

Register

Register

NieioEy NO XCHG
MEMSs
SEG REGs

10



Data Transfer Instructions — LEA, LDS, LES

Mnemo Meaning
nic

LEA Load
Effective
Address

LDS Load
Register
And DS

LES Load
Register
and ES

LEA SI DATA

Format

LEA Reg16,EA

LDS Reg16,MEM

LES Reg16,MEM

(or) MO\

Operation

EA 9 (Reg16)

(MEM) = (Reg16)

(Mem+2) > (DS)

(MEM) > (Reg16)

(Mem+2) = (ES)

Flags
affected

None

None

None

11



The XLAT Instruction

XLAT Translate XLAT ((AL)+(BX)+(DS)0) = (AL) None

Example:

Assume (DS) = 0300H, (BX)=0100H, and (AL)=0DH
XLAT replaces contents of AL by contents of memory location with
PA=(DS)0 +(BX) +(AL)

=03000H + 0100H + ODH = 0310DH
Thus
(0310DH) = (AL)

12



Data Transfer Instructions - PUSH & POP

PUSH: Push to Stack PUSH AX
Ex: PUSH AX AH AL
PUSH DS 55 22 > 22 AR
PUSH [5000H] B S5H 2FFFE
XX 2FFFF
POP: Pop from Stack POP AX
Ex: POP AX o
A
: ] v 55H 2FFEE

2FFFF

11



IN and OUT

The data present inHRS ﬁ‘d}l@ Eidbsferred to accumulator and its
address is present in the DX register aiven in the operand.

IN A, DX

The data of the input port is moved to the accumulator whose memory
address is given in the instruc
J IN A, addr8

The data in the accumulator is moved to the output port whose address is
specified in the DX register  QUT DX, A

The data in the accumulator is moved to the port whose address is given in

the instruction OUT addr8, A

The lower byte of the data of the flaa reaister is moved to the higher byte
register of the accumulator. LAHE

It moves the data in the higher byte of flag register to the lower byte flag

reqgister. SAHE



Arithmetic Instructions: ADD, ADC, INC, AAA, DAA

Mnemonic

INC

DAA

Meaning

Addition

Add with
carry

Increment by
one

ASCIl adjust
for addition

Decimal
adjust for
addition

Format

ADDD,S

ADCD,S

INCD

DAA

Operation
(Si+(D) => (D)
carry 2 (CF)

(S)+(D)+(CF) => (D)
carry 2 (CF)
(D)+1 = (D)

After addition AAA instruction is
used to make sure the result is the

correct unpacked BCD

Adjust AL for decimal
Packed BCD

if low nibble of AL>9 or AF = 1then: AL=AL + 6
if AL > 9Fh or CF =1 then: AL = AL + 60h

Flags
affected

ALL

ALL

ALL butCY

AF CF

ALL

13



Examples:

Ex.1 ADD AX,2
ADC AX,2

Ex.2 INC BX
INC WORD PTR [BX]

Ex.3 ASCII CODE 0-9 = 30-3%h

ADD CL,DL ; [CL]=32=ASCII FOR 2
: [DL]=35=ASCII FOR 5
; RESULT[CL]=67
MOV AL,CL :Move the ascii result into AL since
AAA adjust only [AL]
AAA :[AL]=07, unpacked BCD for 7.

14



Arithmetic Instructions — SUB., SBB. DEC., AAS. DAS. NEG

Mnemonic

SUB

SBB

DEC

NEG

DAS

AAS

Meaning
Subtract

Subtract
with
borrow

Decrement

by one
Negate

Decimal
adjust for

subtraction

ASCII
adjust for

subtraction

Format

SUB D,S

SBB D,S

DEC D

NEG D

DAS

AAS

Operation

(D) -(S) =
Borrow =

(D) - (S) - (CF) >

(D)-1 >

(D)
(CF)

(D)

(AL) difference
(AH) dec by 1 if borrow

(D)

Convert the resultin AL to
packed decimal format

Flags
affected
All

All

All but CF
All

All

CY,AC

15



Multiplication and Division

\._

Byte*Byte AL Register or memory AX

Word*Word AX Register or memory DX :AX
Dword*Dword EAX Register or memory EAX :EDX
Division Dividend Operand Quotient: Remainder

(DIV or IDIV) (Divisor)

Word/Byte AX Register or Memory AL: AH
Dword/Word DX:AX Register or Memory AX:DX
Qword/Dword EDX: EAX Register or Memory EAX : EDX

18



y

~ Multiplication and Division Examples

.

\b

—

Exl1: Assume that each instruction starts from these values:
AL = 85H. BL = 35H. AH=0H

1. MUL BL — AL .BL =85H * 35H= I1B89H — AX = I1B89H

2. IMUL BL — AL . BL=2'S AL * BL=2'S (85H) * 35H
=7BH * 35H = 1977H— 2’s comp — E689H — AX.
AH AL
* DIVBL — AX =0085H

= (02 (85-02*35=1B)—
= '~ Bl

AX 0085H AR AL

4. IDIV BL — BL= 351 = -

19



Ex2: AL=F3H,BL =91H, AH=00H

. . MULBL — AL * BL=F3H * 91H = 89A3H — AX = 89A3H
\B
2. IMULBL - AL*BL=2'SAL*2'SBL=2'S(F3H)* 2'S(91H) =
ODH * 6FH = 05A3H — AX.

00F3H 00F3H
AX _ = 2— (00F3 — 2*6F=15H)

3.IDIV BL — =T 2SOLH) ST
AH AL POS AH AL
— —— = NEG 5 = A
15 02 NEG 2's(02) = FEH 15 FE
R Q
Ax 00F3H AH AL
4. DIVBLE — ——= = 01—(F3-1*91=62) —
BL 91H ( 62) 62 01
R Q

20



\.ﬁ

. Ex3: AX=F000H, BX=9015H, DX=0000H

A~

1. MUL BX = FOOOH * 9015H =

DX

AX

8713

B0O0O

2. IMUL BX = 2'S(FOO0H) * 2"5(9015H) = 1000 * 6FEB =

FOOOH
I5H

3. DIVBL=

4. IDIV BL —

2'S(FO00H) 1000H

15H

15H

DX

AX

O6FE

B00O

= B6DH — More than FFH — Divide Error.

= (C3H > 7F — Divide Error.

21




Ex4: AX=1250H, BL=90H

AX 1250H POS  POS 12504  1250H

VDV BL el " T90H T NEG T 2sNEG  2590H) | 10H
= 29H (Q) — (1250 - 29 * 70) = 60H (REM)
20H ( POS) —» 2'S (20H) =D7TH -~ U
' 60H | D7H

1250H ]
2. DIVBL —» X = =2 _90H.1250-20*90 =50H — . 50H | 20H |
BL  90H | AH AL |

22



Logical Instructions

Mnemonic Meaning
AND Logical AND
OR Logical Inclusive
OR
XOR Logical Exclusive
OR
NOT LOGICAL NOT
Destination Source
Register Register
Register Memory
Memory Register
Register Immediate
Memory Immediate
Accumulator Immediate

Format
AND D.S

OR D,S

XORD,S

NOTD

Destination

R egister
Memory

Operation

(85)+ (D) — (D)
(Sy+HD) — (D)

S)e (D)D)

(D) — (D)

Flags Affected

OF, SF, ZF, PF,
CF
AF undefined
OF, SF, ZF, PF,
CF
AF undefined
OF, SF, ZF, PF,
CF
AF undefined
None

23



Shift and Rotate Instructions

-SHR/SAL.: shift logical left/shift
arithmetic left

- SHR: shift logical right

-1 SAR: shift arithmetic right

-1 ROL: rotate left

- ROR: rotate right

- RCL: rotate left through carry

-1 RCR: rotate right through carry

26



Logical vs Arithmetic Shifts

* A logical shift fills the newly created bit position

with zero:

) —+ o+

L

LA

L

ITe

CF

* An arithmetic shift fills the newly created bit
position with a copy of the number’s sign bit:

—t

- &

> &

> &

P &

> &

>

!

—

CF

27



Shift Instructions

Mnemo Meaning Format Operation Flags
-nic Affected
SAL/SH Shift SAL/SHL D, Count Shift the (D) left by the CF,PFSF.ZF
L arithmetic number of bit positions AF undefined

Left/shift equal to count and fill the OF undefined
Logical left vacated bits positions on if count #1
the right with zeros
Shift the (D) right by the CF.PF.SF.ZF
SHR Shift SHR D, Count number of bit positions AF undefined
logical equal to count and fill the OF undefined
right vacated bits positions on if count #1
the left with zeros
Shift SAR D, Count number of bit positions AF undefined
SAR arithmetic equal to count and fill the OF undefined
right vacated bits positions on if count #1

the left with the original
most significant bit

28



SHL Instruction

* The SHL (shift left) instruction performs a logical
left shift on the destination operand, filling the
lowest bit with O.

8 40 49 0 48 9 &% 4% 4 J

CF

* Operand types:
SHL reg,imm8
SHL mem,imm8
SHL reg,CL
SHL mem,CL



Fast Multiplication

Shifting left 1 bit multiplies a number by 2

mov dl,5 Befaoe: | 00000101 |=5

shl dl,1 After: | 00001010 =10

Shifting left n bits multiplies the operand by

2n

Fon&¥agwple 5 ™ 27 =20
shl dl,2 ; DL

20

32




SHR Instruction

* The SHR (shift right) instruction performs a logical

right shift on the destination operand. The highest
bit position is filled with a zero.

0— o+ o+ o o+ 1 = »

CF

Shifting right n bits divides the operand by 2"

MOV DL, 80
SHR DL, 1 ; DL = 40
SHR DL, 2 ; DL = 10

34



SAR Instruction

* SAR (shift arithmetic right) performs a right
arithmetic shift on the destination operand.

&

> 8

>

b &

> @

> &

> &

®

An arithmetic shift preserves the number's sign.

MOV DL,-80
SAR DL,1
SAR DL,2

; DL
LI » 1

-40
-10

35



Rotate Instructions

Mnem
-onic

ROL

ROR

RCL

RCR

Meaning

Rotate
Left

Rotate
Right

Rotate
Left

through
Carry

Rotate
right
through
Carry

Format

ROL D,Count

ROR D.Count

RCL D,Count

RCR D,Count

Rotate the (D) left by the
number of bit positions equal
to Count. Each bit shifted out

from the left most bit goes back
into the rightmost bit position.

Rotate the (D) right by the
number of bit positions equal
to Count. Each bit shifted out
from the rightmost bit goes
back into the leftmost bit

position.

Same as ROL except carry is
attached to (D) for rotation.

Same as ROR except carry is
attached to (D) for rotation.

Operation

Flags Affected

CF
OF undefined
if count # 1

CF
OF undefined
if count # 1

CF
OF undefined
if count #1

CF
OF undefined
if count# 136



ROL Instruction

* ROL (rotate) shifts each bit to the left

* The highest bit is copied into both the Carry
flag and into the lowest bit

* No bits are lost

4——?4 i 44 4 40 O 4 4

CF

MOV Al,11110000b
ROL Al,1l ; AL = 11100001b

MOV D1,3Fh
ROL D1,4 ; DL = F3h




ROR Instruction

ROR (rotate right) shifts each bit to the right

The lowest bit is copied into both the Carry flag and
into the highest bit

No bits are lost

et and andt an il e e A »

MOV AL,11110000b
ROR AL,1 ; AL = 01111000b

MOV DL,3Fh
ROR DL, 4 ; DL = F3h




RCL Instruction

* RCL (rotate carry left) shifts each bit to the left
* Copies the Carry flag to the least significant bit
* Copies the most significant bit to the Carry flag

CF

¢ ||« ® 40 40 40 49 4 40 <9,
CLC ; CF =0
MOV BL, 88H ; CF,BL = 0 10001000b
RCL BL,1 ; CF,BL = 1 00010000b
RCL BL,1 ; CF,BL = 0 00100001b




RCR Instruction

* RCR (rotate carry right) shifts each bit to the right
* Copies the Carry flag to the most significant bit
* Copies the least significant bit to the Carry flag

STC ; CF =1
MOV AH,10H ; CF,AH = 00010000 1
RCR AH,1 ; CF,AH = 10001000 O

40



Flag control instructions

MNEM- MEANING OPERATION Flags
ONIC Affected
CLC ClearCarry Flag (CF) €« 0 CF
STC SetCarryFlag (CF) €1 CF
CMC Complement (CF) € (CF)! CF

Carry Flag
CLD ClearDirection (DF) <0
Flag S| & DI will be auto incremented while ~ DF

string instructions are executed.
STD  Set Direction (DF) €« 1

Flag SI & DI will be auto decremented  DF
while string instructions are executed.
CLI  Clear Interrupt (IF) €0 IF
Flag
STl  Set Interrupt (IF) € 1 IF

Flag 42



Compare Instruction, CMP

Mnemo Meaning Format Operation Flags
nic Affected

CMP Compare CMPD,S (D) — (S) is used in CF, AF, OF,
setting or resetting the PF, SF, ZF

flags
Allowed Operands
(D) = (S) : ZE=0 Destination Source
RegisterRegister
(D) & (S) ; ZF=0, CF=0 RegisterMemory
(D) <(S) - ZF=0, CF=1 Memory Register

Registerimmediate
Memory Immediate

Accumulator Immediate



String?

* An array of bytes or words located In
memory

* Supported String Operations
—Copy (move, load)
—Search (scan)

—Store
—Compare

44



String Instruction Basics

« Source DS:SI, Destination ES:DI

—You must ensure DS and ES are correct

— You must ensure Sl and DI are offsets into DS
and ES respectively

* Direction Flag (0 = Up, 1 = Down)

— CLD - Increment addresses (left to right)
— STD - Decrement addresses (right to left)

45



String Instructions

Instruction prefixes

Prefix Used with Meaning

REP MOVS Repeat while not end of string
STOS CX#0

Repeat while not end of string

REPE/REPZ CMPS and strings are equal. CX # 0
SCAS and ZF = 1

CMPS Repeat while not end of string

SEPNE/REP and strings are not equal. CX #
SCAS  gandzF=0

46



Instructions

Mnemo- meaning
Nic

MOVS Move string

DS:SI
- ES:DI

CMPS Compare
string

DS:SI
- ES:DI

format

MOVSB/
MOVSW

CMPSB/
CMPSW

Operation

((ES)0+(DI)) € ((DS)0+(SI))
(SI) € (Sl)+10r2
(DI) € (D) + 10r 2

Set flags as per
((DS)0+(SI)) - ((ES)0+(DI))
(S)< (SlI)x1or2

(DI) €« (DI) £ 10r 2

Flags
effect

none

All
status
flags

47



Mnemo-
Nic
SCAS

LODS

STOS

meaning
Scan string

AX - ES:DI

Load string
DS:Sl 2> AX

Store string
ES:DI € AX

format

SCASB/
SCASW

LODSB/
LODSW

STOSB/
STOSW

Operation
Set flags as per
(AL or AX) - ((ES)0+(DI))
(Dl) €« (Dl)+ 1o0r2
(AL or AX) € ((DS)0+(SI))
(SI) €< (Sl) £ 10r2

((ES)0+(DI)) € (AL or A) + 1 or 2
(DI) € (DI) + 1 0r2

48



Branch group of instructions

Branch instructions provide lot of convenience to the
programmer to perform operations selectively, repetitively

etc.

Branch group of instructions

S |

Conditional Uncondi- Iteration CALL Return
jumps tional instructions instructions instructions

jump

49



SUBROUTINE & SUBROUTINE HANDILING INSTRUCTIONS

Main program

Subroutine A

First Instruction
Call subroutine A /

Next instruction

Return

Call subroutine A
Next instruction

50



A subroutine is a special segment of program that can be called for
execution from any point in a program.

An assembly language subroutine is also referred to as a “procedure”.

Whenever we need the subroutine, a single instruction is inserted in to
the main body of the program to call subroutine.

To branch a subroutine the value in the IP or CS and IP must be
modified.

After execution, we want to return the control to the instruction that
immediately follows the one called the subroutine i.e., the original
value of IP or CS and IP must be preserved.

Execution of the instruction causes the contents of IP to be saved on
the stack. (this time (SP) € (SP) -2)
A new 16-bit (near-proc, mem16, reg16 i.e., Intra Segment) value
which is specified by the instructions operand is loaded into IP.
Examples: CALL 1234H

CALL BX

CALL [BX]

51



RETURN

* Every subroutine must end by executing an instruction that returns control
to the main program. This is the return (RET) instruction.

* By execution the value of IP or IP and CS that were saved in the stack to
be returned back to their corresponding regs. (this time (SP) € (SP)+2)

Mnem Meaning Format Operation Flags
-onic Affected
RET Retum RET or Return to the main None

RET operand Program by restoring IP
(and CS for far-proc). If

operands is present, it is
added to the contents of
SP.

None
Disp16

54



Mnemonic  meaning

LOOP

LOOPE/
LOOPZ

LOOPNE/
LOOPNZ

Loop

Loop while
equal/ loop
while zero

Loop while
not equal/
loop while
not zero

format

Loop short-label

LOOPE/LOOPZ
short-label

LOOPNE/LOOPNZ
short-label

Operation

(CX) € (CX) -1
Jump to location given by
short-label if CX # 0

(CX) € (CX) -1
Jump to location given by

short-label if CX # 0 and
ZF=1

(CX) € (CX) -1
Jump to location given by

short-label if CX # 0 and
ZF=0

57



Control flow and JUMP instructions

Unconditional Jump

A

Part 1
JMP AA_

< Unconditional JMP

Part 2

Skipped part

jAA

Part 3
XXXX

-
-

+<— Next instruction

JMP - unconditional jump

JMP Operand

58



Conditional Jump

L 4

\NO

Part 1

Jcc AA

Part 2

» XXXX

ondv/

YES

Part 3

AA XXXX

«—— Conditional Jump

«—

Skipped part

Next instruction

60



Conditional Jump instructions

Conditional Jump instructions in 8086 are just 2 bytes long. 1-byte
opcode followed by 1-byte signed displacement (range of -128 to
+127).

Conditional Jump Instructions

Jumps based on Jumps based on
a single flag more than one flag

61



TYPES

Mnemonic
JA
JB
JB
JBE
JC
JCXZ
JE
JG
JGE
JL

meaning
Above
Above or Equal
Below
Below or Equal
Carry
CX register is Zero
Equal
Greater
Greater or Equal

Less

condition
CF=0 and ZF=0
CF=0
CF=1
CF=1 or ZF=1
CF=1
(CF or ZF)=0
ZF=1
ZF=0 and SF=0F
SF=0F

(SF XOR OF) = 1 .



Mnemonic

JLE

JNA

JNAE

JNB

JNBE

JNC

JNE

JNG

JNGE

JNL

meaning
Less or Equal
Not Above
Not Above nor Equal
Not Below
Not Below nor Equal
Not Carry
Not Equal
Not Greater

Not Greater nor
Equal

Not Less

condition
((SF XOR OF) or ZF) = 1
CF =1 or Zf=1
CF =1
CF=0
CF=0and ZF =0
CF=0
ZF =0

((SF XOR OF) or ZF)=1
(SF XOR OF) = 1

SF = OF

64



Mnemonic
JNLE
JNO
JNP
JNZ
JNS
JO
JP
JPE
JPO
JS
JZ

meaning
Not Less nor Equal
Not Overflow
Not Parity
Not Zero
Not Sign
Overflow
Parity
Parity Even
Parity Odd
Sign
Zero

condition
ZF =0 and SF = OF
OF =0
PF=0
ZF =0
SF=0
OF =1
PF =1
PF =1
PF=0
SF =1
ZF =1

65



Jumps Based on a single flag

JZ
JNZ
JS
JNS

JC
JNC

JP
JNP
JO
JNO

r8
r8
rg
r8

r8
r8

r8
r8
r8
r8

;Jump if zero flag set to 1 (Jump if result is zero)
;Jump if Not Zero (Z flag = 0 i.e. result is nonzero)
;Jump if Sign flag set to 1 (result is negative)
;Jump if Not Sign (result is positive)

;Jump if Carry flag set to 1

. ) There is no jump
;Jump if No Carry based on AC flag

;Jump if Parity flag set to 1 (Parity is even)
;Jump if No Parity (Parity is odd)
;Jump if Overflow flag set to 1 (result is wrong)

;Jump if No Overflow (result is correct)

66




JZ r8 ; JE (Jump if Equal) also means same.

JNZ r8 ; JNE (Jump if Not Equal) also means same.

JC r8 ;JB (Jump if below) and JNAE (Jump if Not
Above or Equal) also mean same.

JNC r8 ;JAE (Jump if Above or Equal) and JNB (Jump
if Not Above) also mean same.

JZ, JNZ, JC and JNC used after arithmetic operation

JE, JNE, JB, JNAE, JAE and JNB are used after a
compare operation.

JP r8 ; JPE (Jump if Parity Even) also means same.
JNP r8 ; JPO (Jump if Parity Odd) also means same.

67



Machine control instructions

HLT instruction — HALT processing

the HLT instruction will cause the 8086 to stop fetching and executing
instructions. The 8086 will enter a halt state. The only wa%f_to get the processor
out of the halt state are with an interrupt signal on the INTR pin or an interrupt
signal on NMI pin or a reset signal on the RESET input.

NOP instruction

this instruction simply takes up three clock cycles and does no
processing. After this, it will execute the next instruction. This instruction is
normally used to provide delays in between instructions.

ESC instruction

whenever this instruction executes, the microprocessor does NOP or
access a data from memory for coprocessor. This instruction passes the
information to 8087 math processor. Six bits of ESC instruction provide the
opcode to coprocessor.

when 8086 fetches instruction bytes, co-processor also picks up these
bytes and puts in its queue. The co-processor will treat normal 8086
instructions as NOP. Ioating\ FI’Oim instructions are executed by 8087 and
during this 8086 will be in WAIT.

90



Machine control instructions contd

LOCK instruction

this is a prefix to an instruction. This prefix makes sure that during

execution of the instruction, control of system bus is not taken by other
MIiCroprocessor.

in multiprocessor systems, individual microprocessors are connected
together by a system bus. This is to share the common resources. Each
processor will take control of this bus only when it needs to use common
resource.

the lock prefix will ensure that in the middle of an instruction, system
bus is not taken by other processors. This is achieved by hardware signal
‘LOCK' available on one of the CPU pin. This signal will be made active
during this instruction and it is used by the bus control logic to prevent
others from taking the bus.

once this instruction is completed, lock signal becomes inactive and
microprocessors can take the system bus.

WAIT instruction

this instruction takes 8086 to an idle condition. The CPU will not do any
processing during this. It will continue to be in idle state until TEST pin of
8086 becomes low or an interrupt signal is received on INTR or NMI. On
valid interrupt, ISR is executed and processor enters the idle state again.

91



Assembler directives

» An assembler is a program that is used to convert an assembly language
program into an equivalent machine language program.

» The assembler finds the address of each label and substitutes the value of
each constant and variable in the assembly language program during the
assembly process, to generate the machine language code.

»While performing these operations, the assembler may find syntax errors.

» They are reported to the programmer at the end of the assembly process.

» The logical and other programming errors are not found by the assembler.

» For completing these tasks the assembler needs some commands from the
programmer .The required storage class for a particular constant or a
variable such as byte, word, or double word,

» The logical name of the segments such as CODE, STACK, or DATA, the
type of procedures or routines such as FAR, NEAR, PUBLIC, or EXTRN,
the end of a segment etc.

» These types of commands are given to the assembler using a predefined
alphabetical strings called Assembler directives.

» Assembler directives are directions for the assembler, and not the
Instructions for the 8086.



> Assembler Directives for variable and Constant Definition

> (i) DB, DW, DD, DQ, and DT:

» DB (define byte),DW(define word),DD(define double word), DQ (define
guad word), and DT (define ten bytes) are used to reserve one byte, one
word (i.e. 2 bytes), one double word(i.e. 2 words), one quad word(i.e. 4
words) and ten bytes in memory, respectively for storing constants,
variables, or strings.

» Example:DATAL DB 20h ; Reserve one byte for storing DATAland assign
the value 20h to it.

» ARRAY DB 10h, 20h, 30h ; Reserve three bytes for storing ARRAY and
Initialize it with the values ; 10h, 20h and 30h

» CITY DB “NARELA” ;Store the ASCII code of the characters specified
within double quotes in the array or a list named CITY

» DATA2 DW 1020h ; Reserve one word for storing DATA2 and Assign the



» The directive DUP (duplicate) is used to reserve a series of bytes, words,
double words, or ten bytes and is used with DB, DW, DD and DT,
respectively.

» The reserved area can be either filled with a specific value or left
uninitialized.

»Example:ARRAY DB 20 DUP(0) ;Reserve 20 bytes in the memory ; for
the array named ARRAY and initialize all the elements of the array to 0
(due to presence of 0 within the bracket near the DUP

»ARRAY1 DB 25 DUP (?) ; Reserve 25 bytes in the memory for the array
named ARRAY1 and keep all the elements of the array uninitialized (due
to the question mark present within the bracket near the DUP

»ARRAYZ2 DB 50 DUP (64h) ; Reserves 50 bytes in the memory for the
array named ARRAY?2 and initializes all the elements of the array to 64h.

» EQU: The directive EQU(equivalent) is used to assign a value to a data
name Example: NUMBER EQU 50h ; Assign the value 50h to NUMBER.

»NAME EQU “RAMESH?” ; Assign the string “RAMESH” to NAME

»Assembler Directives Related to Code(Program) Location: (i) ORG:

» The ORG (origin) directive directs the assembler to start the memory
allocation for a particular segment (data, code, or stack) form the declared
offset address in the ORG statement. While starting the assembly process



» When the ORG directive is not mentioned , LC is initialized with the offset
address 0000h.

»When the ORG directive is mentioned at the beginning of the statement,
LC is initialized with the offset address specified in the ORG directive.

»Example: ORG 100h When this directive is placed at the beginning of the
code segment, the location counter is initialized with 0100h and the first
instruction is stored from the offset address 0100h within the code
segment.

»>If it is placed in the data segment, the next data storage starts from the
offset address 0100h within the data segment.

> (i) EVEN: The EVEN directive updates the location counter to next even
address, if the current location counter content is not an even number.

»Example: ARRAY2 DW 20 DUP (0) These statements in a segment
declare an array named ARRAY2 having 20 words, starting at an even
address.

» The advantage of storing an array of words starting at an even address is
that the 8086 takes just one memory read/write cycle to read/write the
entire word

» Otherwise the 8086 takes two memory read/write cycles to read/write to the
word.



Example: EVEN
RESULT PROC NEAR

Instruction in Result Procedure

RESULT ENDP
Here the procedure RESULT, which is of type NEAR, is stored starting at an
even address in the code segment. The ENDP directive indicates the end of

the RESULT procedure.
() LENGTH: This directive is used to determine the length of an array or

string in bytes.

Example: MOV CX, LENGTH ARRAY CX is loaded with the number of bytes
in the ARRAY.

(iv) OFFSET: This operator is used to determine the offset of a data item in a
segment containing it.

Example: MOV BX, OFFSET TABLE

If the data item named TABLE is present in the data segment, this statement
places the offset address of TABLE, in the BX register.



Assembler Directives for Segment Declaration
() SEGMENT and ENDS: The SEGMENT and ENDS directives indicate the
start and end of a segment, respectively. In some cases, the segment may
be assigned a type such as PUBLIC (i.e. it can be used by other modules of
the program while linking) or GLOBAL (i.e. it can be accessed by any other
module).
Example: This example indicates the declaration of a code segment named
CODE 1. CODE 1 SEGMENT
Instructions of CODE 1 segment
CODE 1 ENDS
(i) ASSUME: The ASSUME directive is used to inform the assembler, the
name of the logical segments to be assumed for different segments used in
the program.
This statement informs the assembler that the segment address where the
logical segments CODE1 and DATAL are loaded in memory during execution
IS to be stored in CS and DS registers, respectively.
ASSUME CS : CODE 1, DS: DATA1
(i) GROUP: This directive is used to form a logical group of segments with a
similar purpose. The Assembler passes information to the linker/loader to
form the code, such that the group declared segments or operands lie within
a 64 Kb memory segment. All such segments can be addressed using the

N @ PR Ag g @ PR g i P S| A S iy



Example: This statement directs the loader/linker to prepare an executable
file (.exe) such that the CODE1, DATA1, and STACK1 segments lie within a
64KB memory segment that is named

PROGRAM1 GROUP CODE1, DATA1, STACK1
The Assembler directives for declaring procedures:
() PROC : The PROC directive indicates the start of a named procedure.
The NEAR and FAR directive specify the type of the procedure:
Example: This statement indicates the beginning of a procedure named
SQUARE_ROQT, which is to be called by a program located in the same
segment. The FAR directive is used for procedures to be called by the
programs present in code segments other than the one in which this
procedure is present.
For example, SALARY PROC FAR indicates the beginning of a FAR type
procedure named SALARY

SQUARE_ROOT PROC NEAR

(i) ENDP: The ENDP directive is used to indicate the end of a procedure. To
mark the end of a particular procedure, the name of the procedure may
appear as prefix with the directive ENDP.
Example: SALARY PROC NEAR

...... : Code of SALARY

Procedure



(i) EXTRN and PUBLIC: The directive EXTRN (external) informs the
assembler that the procedures, label/labels, and names declared after this
directive has/have already been defined in some other segments and in the
segments where they actually appear, they must be declared in public, using
the PUBLIC directive.
Example: MODULE1 SEGMENT

PUBLIC SQURE_ROOT

SQUARE_ROOT PROC FAR

;CODE OF SQUARE_ROOT

PROCEDURE

SQUARE_ROOQOT ENDP

MODULE1 ENDS ;
i) EXTRN and PUBLIC (continued): NOTE: If one wants to call the
procedure named SQUARE ROOT appearing in MODULE1L from MODULEZ2,
It must be declared using the statement PUBLIC SQUARE ROQOT in
MODULEZ1 and it must be declared external using the statement EXTRN
SQUARE ROOT in MODULEZ2. If a jump or a call address is external, it must
be represented as NEAR or FAR. If data are defined as external, their size
must be represented as BYTE, WORD, or DWORD. MODULE2
SEGMENT
EXTRN SQUARE_ROOT FAR
...... ; CODE OF MODULE2



MACRO and ENDM

Suppose a number of instructions occur repeatedly in the main program,
the program listing becomes lengthy.

In such a situation, a macro definition, i.e. a label, is assigned with the
repeatedly appearing string of instructions.

The process of assigning a label or macro name to the repeatedly
appearing string of instructions is called macro definition.

The macro name is then used throughout the main program to refer to that
string of instructions.

Defining a MACRO
CALCULATE MACRO
MOV AX, [BX]

ADD AX, [BX + 2]
MOV [SI], AX

ENDM



CALCULATE is the macro name and the macro is used to add two
successive data in the memory, whose offset address is present in BX and the
result is stored in the memory at the offset address in Sl.
Using parameters in macro definition, the programmer specifies the
parameters of the macro that are likely to be changed each time the macro is
called. The macro given before (CALCULATE) can be modified to calculate
the result for the different sets of data and store it in a different memory
locations as follows:
CALCULATE MACRO OPERAND, RESULT

MOV BX, OFFSET OPERAND

MOV AX, [BX]

ADD AX, [BX + 2]

MOV S|, OFFSET RESULT

MQV [SI], AX

ENDM

Example: Program to find the average of 10 byte-type data stored in an
array in data segment.
ASSUME CS: CODE1, DS: DATAL
DATA1 SEGMENT ;data segment ; starts
ARRAY DB 12h, 23h, 44h, 56h,
OABh, 73h, 44h, OABh,
OEEh, OAh ; 10 bytes are stored



COUNT EQU 10 ;Count is the number of bytes in the

array
AVERAGE DB 01 DUP(0) ;Reserve one byte ; to store the
result
DATA1 ENDS ;data segment ; ends
CODE1 SEGMENT , Code segment ; starts
START:MOV AX, DATA1 ; Segment address of DATAL is
moved to AX
MOV DS, AX ;MOV AX contents to DS
MOV SI, OFFSET ARRAY ;Move offset address of ARRAY to
SI
XOR AX, AX ;Clear AX and Carry Flag
MOV BX, 0000h ;Clear BX
MOV CX, COUNT ;Move COUNT to CX
NEXT: MOV BL, [SI] ;Move one byte ; from array into BL
ADD AX, BX ;Add AX and BX
INC Sl ;Increment Sl to point to next byte
LOOP NEXT ;Repeat Loop NEXT CX times
MOV DH, COUNT ;MOV Count to DH
DIV DH ;Divide AX by CH

MOV AVERAGE. AL ‘Store AL contents in AVERAGE



UNIT3
Interfacing with 8086



Memory interface

—

D, 4 b D,
Ao ==
Bank 1 Bank 0
(512 bytes) (512 bytes)
bus A Asg A Atg

(Odd addressed memory bank) (Even addressed memory bank)

Fig. 5.2 Memory interfacing



Memory interface

In this module you will learn:

o’

«* What are the different types of memory

** Memory structure & its requirement.

s+ How to interface RAM & ROM with 8086
UP 1in minimum & maximum mode.

s+ Different types of address decoding.




Memory capacity

» The no. of bits that a semiconductor ~ memory

chip can store 1s called its chip capacity.

Memory Organization:

» Each memory chip contains 2N locations, where
N 1s the no. of address pins on the chip.

» Each location contains M bits, where M is the no.
of data pins on the chip.

» The entire chip will contain 2¥ x M bits.

» E.g. for 4K x 4, 2'2=4096 locations, each location
holding 4 bits, so N=12 & M=4.




1) ROM (Read Only Memory)

2) PROM (programmable memory)

3) EPROM (Erasable programmable ROM)

4) EEPROM (Electrically Erasable PROM) 500000 times
5) Flash memory EPROM

6) RAM (Random Access Memory)




EPROM Density( bits) Capacity (bytes )
2716 2K*8
2732 4K*8
27C64 : SK*8

27C128 16 K*8
27C256 J2K*8
27C512 64K*8
27C010 128K*8
27C020 : 256K*8

27C040 S12K*8




SRAM
4361
4363
4364

Density( bits)

64K
64K
64K
256K
256K
IM

Organization
64K *1
16 K*1
SK*8
64K *4
32K*8
128K *8




EPROM Density( bits) Capacity (bytes )
2164 64K 64 Kx1
1256 256K 256 Kxl1
21464 256K 64 Kx4
421000 1M 1 Mxl

424256 IM 256 Kx4
44100 4M 4 Mx1
44400 4M 1 Mx4
44160 4M 256 Kx16
416800 16M 8 Mx2
416400 16M 4 Mx4
416160 16M 1 Mx16




EPROM
R/W memory 2048x8

4096x8

Internal decoder

§
3
C
=
—
-
e
=
—_




|. Address Pins:

No of address pins No of memory location

= 512 lecation

211 = 2048 = 2K location




2. Data pins:  Number of flip flop in each location 1s 4/8,
then data pins 4/8.

3. Control pins:
ROM/ EPROM will consist of only RD (OE)
RAM will have control pins RD & WR.

4. Commons pins: CS (chip select) .
CS is generated using:
1. NAND gate
1. 3 to 8 decoder
iii. PAL IC




* In general all the address lines are not used by the
memory devices to select particular memory
locations.

* The remaining line are used to generate chip select
logic.

* Following two techniques are used to decode the
address:

1) Absolute or Full decoding

2) Linear or Partial decoding




This technique 1s used 1n the small system

All the address lines are not used to generate chip
select logic

Individual High order address lines are used to
decode the chip select for the memory chips.

I _ess hardware i1s required.

Drawback 1s address of location 1s not fixed. so each

location may have multiple address.

All the higher address lines are decoded to select the
memory chip.

The memory chip is selected only for the specified
logic levels on these higher order address lines.

So each location have fixed address.

This technigque 1s expensive

It needs more hardware than partial decoding.




Q. I: Interface 32 KB of RAM memory to the 8086
microprocessor system using absolute decoding with the
suitable address.

Step_1: Total RAM memory = 32 KB
Halt RAM capacity = 16 KB
hence,

number of RAM IC required =2 ICs of 16 KB
SO,

EVEV Bank =1 ICs of 16 KB RAM

ODD Bank =1 ICs of 16 KB RAM

Odd bank

RAM _1(16KB) RAM _2 (16KB)

Step_2: Number of address lines required = 15 address lines




Step_3: Address decoding table

HEX

A K A . . »
ADDRESS
A A A
19| I8 17 16 15 14 13 1] 0] 9 hY |

l
e Lolololo ol [ 1L L[ [ 11111

To decoder I
To 16 K IC




Step_3: Generation of chip select logic

A
.’\ I8

A 17

A

16

Ajs

M/TO

b B £ £ 1

A0

CSO




ALE

BHE/S,
A/S,-A LSS,
AD,.-AD,

DI'/R
DEN
MN/MX

M/10

RD

IC 74244
buffer

LATCH

8282
(2 or3)

14

D,-D, A,-A, RD WR

16K x8 RAM-1 Even




Q. 2: Interface 32 K word of memory to the 8086 microprocessor
system . Available memory chips are 16 K x 8 RAM. Use
suitable decoder for generating chip select logic.

Step_1: Total memory = 32 K word =32*2 K = 64 K
IC available = 16 K

hence,
number of RAM IC required =64 K x 8/ 16 Kx8 =4 ICs

SO,

EVEV Bank =2 ICs of 16 Kx8 RAM

ODD Bank =2 ICs of 16 Kx8 RAM
| Evenbank |  Oddbank

RAM_3 (16K) RAM 4 (16K)

Step_2: Number of address lines required = 15 address lines




Step_3: Address decoding table

MEMORY | yEx BINARY ADDRESS

IC ADDRESS

A | As A Al Azl Ass] Ayl Azl Al Aol Asl As| Azl Asl As| Agl Azl Al Al A
exeslan lOlOlOlOlOlOlOlO]O]OlOlOlOlOlOlOlOO]0O]0
O e lololo ol el ]o

sl w00 1O1O1O(0O[1]0]0]0O]0O]0l0OlO[0lO]O0]0I0]0]0
VO e 1010100111 {1111 {1|1|1|1]|1]0

To decoder

To 16 KIC




Step_3: Generation of chip select logic

A Ay M/10

Decoder
741.8373




M/10

RD
IC 74244
buffer TWR
_/
BHE/S, LA;I‘(;H S
A/S-A LSS, 8282 s
AD,.-AD, (2 or 3)
Transcei l T

D.-D, A,,-A, RD WR

16Kx8 RAM-1 Even
+

16Kx8 RAM-3 Even 16Kx8 RAM-4 Odd




8255A - Programmable Peripheral Interface

power | —* *V

BI-DIRECTIONAL
DATA BUS

DATA BUS
07-D0 BUFFER

CONTROL
LOGIC

GROUP A
PORT A
(8]

GROUP A

GROUP A
CONTROL
&Eﬁ:>
INTERMAL
DATA BUS
GROUP B
CONTROL

GROUP B
FPORTE

8

Ay
PA:
"/\.
PA,

RD —

S
GND
Ay

re.
PC,
PC,
PC,
PC,
PC,

PC; —

rc,
PB,
PR,
PB;

18
'll)

8255A

401

39
38'

37+
36 —

LAY
34
33

N

) 8
R

9+

28/
2|
26|

25}
24

23}
224
21}

PA,
PA«
PA,
PA-
WR
Rewet
D,

D,

D,
D,

- Dy

D,
D
Vee

- PB-

PB,
PB.
PB,



Read/Write Control Logic

o7 | o6 | o5 | o4 | o3 | b2 | o1 | DO
CS | Al | A0 | Result I
| I
0 0 0 |PortA
Group A Group B
0 0 1 |PortB Port C | [PoriC
(Upper: PCT - PC4) {Lower: PC3 - PCO)
0 1 0 Port C 1 = input; 0 = output 1 = input; 0 = output
Port A Port B
O 1 1 CWR 1 = input; 0 = output 1 = input; 0 = output
Mode Selection Mode Selection
00 = Mode O 0= Mode O
01 = Mode 1 1 = Mode 1
1x = Mode 2
1 = /O Mode
0= BSR Mode
Control Word Format 8255A
i ! o e fogg (paliperadg D gl
o X T xS x I b b 36 F SR
l T A | Bl RERSsS o ‘
v X L— Port C bit Set/ Reset
BSR mode Don't care Port C bit select 1 = Set
0 = Reset

b

_—— 0000
—— QO - - OQlT

=H OS2 0O-0-0|T

Bit O
Bit 1
Bit 2
Bit 3
Bit 4
Bit5
Bit6
Bit7

BSR control word format




Mode 0 (BASIC I/0)

Provides simple input and output capabilities using each of
the three ports.

Data can be simply read from and written to the input and
output ports respectively, after appropriate initialization.

No Handshaking is required.

——”PA6-PA7 ——PA
—>PC4-PC7 —>
—>PCO-PC3 5.
—>PB0-PB7 —>PBO-PB7

Signals in MODE O



Mode 1 (STROBE 1I/0)

* This functional configuration provides a means for
transferring 1/O data to or from a specified port in conjunction
with strobes or “handshaking” signals.

* Inmode 1, Port A and Port B use the lines on Port C to
generate or accept these “handshaking” signals.

PA[0:7] PA[0:7]

—>STB(A)[AL] — OBF(A)[AL]
—=>IBF(A) —>ACK(A)[AL]
—>INTR(A) —>INTR(A)

PB[0:7) PB[0:7)

—>STB(B)[AL] ——>OBF(B)[AL]
—>IBF(B) —> ACK(B)[AL]
—>INTR(B) —>INTR(B)

I/P o/P



Mode 2
(STROBE BIDIRECTIONAL BUS 1/0)

This functional configuration provides a means for
communicating with a peripheral device or structure on a
single 8-bit bus for both transmitting and receiving data
(bidirectional bus 1/0).

* “Handshaking” signals are provided to maintain proper bus
flow discipline in a similar manner to MODE 1.

* Interrupt generation and enable/disable functions are also
available. PA[0:7]

—> STB(A)[AL]
—>|BF(A)

—> INTR(A)
—=>INTR(A)
—>INTR(A)




ADC/DAC INTERFACING WITH 8086

Block Diagram of ADC 0808 / 0809

Successive
SOC - CLOCK Approximation

e »
l/PO I I
AT EOC

Control and

1/P, Timing unit
and SAR

/P 8 Channel
S Oeiod Analo 7]
Multiplexer g 2 ——=
et Comparator = ,
4 8-bit
oF  F—-ow
DAC Latch |
[/ PH 256 R re ok
5 Register f o=
ladder and
o » 4 Switch tree
1/P ¢

e » | | O/P
I1/P - T ' T Enable

I I | Vrwef+ Vref _

0B A
Addrecce | ingc




ADC 0808/0809 WITH 8086 THROUGH

w2

8255

-2
AN

N

P‘A- e P‘A'C'

PC,

PB,J
PB,

PB,

vrer +
Vref + WS ol
+5V =
+5 Ve 2l Vee « Clock up
& 0.-0,
\J 0 iz
e ADC —Analg
Voltage
by 0808
" K GND |+ —-|
) ALE
5V A B C =
t




Ex: Interface ADC0808 with 8086 using 8255 ports.
ASsem bly Ianguagg Use portA of 8255 foe transferring Digital O/P of

program of ADC ADC to the CPU and portC for control signals.
Assume that an analog I/P is present at I/P2 of the

ADC and a clock input of suitable frequency is

MOV AL ,98H available for ADC. Draw the schematic and write the
OUT CWR,AL required ALP.

MOV AL,02H
OUT PORTB,AL
MOV AL, 00H
OUT PORTCL,AL
MOV AL, 01H
OUT PORTCL,AL
MOV AL,00H
OUT PORTCL, AL
INAL,PORTCU
CLC

L1:RCLAL, 01H
JNC: L1
IN AL, PORTA
HLT




DAC interfacing

—

S
Do~ Dy PAy - Phg {88
x
— -.E\N\’\/_ ‘5
8255 i 25k
R— 0.01 uF
IOWR —{ }—{ 16
-2V o 3
0.1 yF = .

i



Assembly language program of DAC

EX: 8 bit DAC is connected with 8086 through port 90H write an assembly language program to generate
a triangular wave at DAC o/p .

MOV AL,00H
L1: OUT 90H,AL
INC AL
CMP AL,FFH
JNZ L1
L2: DECAL
OUT 90H,AL
CMP AL,00H
JNZ : L2
JMP: L1
HLT
EX: Write an ALP to generate a square wave of 3V O/P in a DAC with 8-bit binary I/P and a maximum of
5V output, Assume that the addresses 80H, 82H, 84H, 86H are assigned to PORTA, B,C And CWR

MOV AL,80H DELAY: MOV CX,COUNT
OUT 86H,AL L2: NOP
L1: MOV AL,00H NOP
OUT 80H,AL NOP
CALL : DELAY LOOP:L1
MOV AL,99H RET
OUT 80H,AL
CALL: DELAY

JMP: L1



KEY BAORD INTERFACING

Output port 01

D,

& SV

Y o

' 2 o Df
/] /1

s ] ox]
o o

¥ s>

O»/ 4

¥ 17

Fig: (a) Port connections

10KQ



Example

 Interface a 4 * 4 keyboard with 8086 using 8255 an write
an ALP for detecting a key closure and return the key code
in AL. The debounce period for a key 1s 10ms. Use
software debouncing technique. DEBOUNCE is an
available 10ms delay routine.

* Solution: Port A 1s used as output port for selecting a row
of keys while Port B is used as an mput port for sensing a
closed key. Thus the keyboard lines are selected one by
one through port A and the port B lines are polled
continuously till a key closure 1s sensed. The routine
DEBOUNCE is called for key debouncing. The key code
1s depending upon the selected row and a low sensed
column.



RESET g

LOWR

IORD

PA,

PA,

PA,

PA,

PB,
PB,

PB,

PB,

Interfacing 4 * 4 Keyboard

o
n




MOV AL,82H
OUT 86H, AL
START: MOV AL,00H }

MOV 80H,AL } clear all rows by sending O0H to PORTA
NEXT: IN AL,82H } obtain status of columns in AL by reading PORTB
AND AL,0FH } mask upper nibble in AL
CMP AL,0FH } compare Al with OF to identify whether any key is pressed
JZ NEXT  }If ZF=1then no key is pressed; go to location back ,else go to

next step to find the key number which is pressed
CALL : DELAY

MOV BL,00H ; store first key number in row0 ( 0t key)

MOV AL,FEH ; ground row0 alone by sending FEH to PORTA
OUT 80H,AL

IN AL,82H
AND AL,0FH
CMPAL,OFH
JNZ : FIND
MOV BL,04H
MOV AL,FDH
OUT 80H,AL
IN AL,82H



L1

AND AL,0FH
CMP AL,OFH
JNZ : FIND
MOV AL,08H
MOV AL,FBH
OUT 80H,AL
IN AL,82H
AND AL,0FH
CMP AL,OFH
JNZ :FIND
MOV BL,0CH
MOV AL,F/H
OUT 80H,AL
IN AL,0FH
AND AL,0FH
CMPAL,OFH
JNZ: FIND
JMP: START
MOV CX,COUNT
NOP

NOP
LOOP:L1
RET

FIND : RCR AL,01H
IJNC GOT_KEY
INC BL
JMP : FIND
GOT: RET



DATA TRANSFER SCHEMES

» There will be several 10 and memory devices
connected to transfer data between memory and mp

» No problem for transferring data between MP and
memory since same technology Is used in the memory
and MP. Speed of both Is compatible.

» Data transfer between the MP and 10 devices is
problematic because the Speed of the 10 devices and
the speed of MP or memory is mismatch.

» To overcome the speed problem we have different
Modes of data Transfer.



NEEDS OF DATA TRANSFER SCHEME

» A wide variety of 10 devices having wide range of speed and other
different characteristics are available .

» A slow responding 10 device cannot transfer data when
microprocessor issues instruction for it as it takes some time to get
ready.

» Data codes and formats in peripheral differ from the word format of
In the central processing unit and memory.

» Transfers rates of peripherals is usually slower than the transfer rates
of central processing unit.

» Operating modes of peripheral are different from each other and each
must be controlled so as not to disturb the operation of each other
peripherals connected to central processing unit .



Modes of data transfer schemes

DATA TRANSFER SCHEME

PARALLEL DATA SERIAL DATA

l

J

PROGRAMMED 110 INTERRUFT DRIVEN IO b\ pECT MEMORY
| ACCESS
SYNCHRONOUS SINGLE INTERRUPT  RMULTI INTERRUPT

ASYNCHRONGOUS LINE LINE



8251 USART

Cata Transmit
D, =D  bus buffer TXD
buffer (P-S)
Resset + T X RDY
CLK Transmit
oS Read/Write gzntrrgl TXE
. control TXC
RD logic
WR
SS 3
DSR
DTR
Modem
STS Receive
1S control buffér RXD
RTS (S—P)
RXRDY
data bus control RXC
SYNDET

Fig. 9i.2: Functional block diagram of 8251




CONTROL WORDS

ASYN (D,Dy, # 00)

i

Framing control I

00~Not valid
01—=1 stop bit
10—=1%stop bits
11 —=2 stop bits

*| 01—~6 bits

Baud rate factor |
00—SYN mode

L ]01—=ASYNx1

10—ASYNx 16

L.E.-*ASYN x84

[ Character ler;éth |
005§ bits

10—=7 bits
11 ~=8 hits

Parity control

X0—-No parity
01—=0dd parity
11 —=Even parity

Fig. 14.38 Mode instruction format



Ds

]

Dy

SCS

ESD

EP

PEN

Charactor Length

0 1 0 1
0 0 1 1
5 bits G hits 7 bits 8 bits
Parity
0 1 0 1
0 0 1
Disable F.'::;[rji% Disable F'f;‘fl{;,
aynchronous Mode
0 1
Internal External
synchronization | Synchronization

Number of Synchronous Charactors

0

1

2 Charactors

1 Charactor

Fig. 3 Bit Configquration of Mode Instruction (Synchronous)




Enable hunt mode*
1 = Enable search for
sync characters

Internal reset
1 = Resets

8251 to mode
ﬁ

D; Dg Dy D, Dy D, D, D,

o] [ e e[

Transmit enable

1 = Enable
0 = Disable

Data terminal ready

-~

Request to send
1= Enable RTS

0 — ——" Al tt——]

Error Reset
1= Reset error flags

"1 1=Enable DTR

Receive enable
- 1 =Enable

0 = Disable

Send break character
»| 1=Forces TxD "Low"

PE.OEFE.

*(Has no effect in Async mode)
Note : Error reset must be performed whenever
RX enable and enter hunt are programmed

0 = Normal operation
@

Fig. 14.39 Command instruction 'fo'l_'mat



INTERRUPT STRUCTURE OF 8086

Interrupts

N

Hardware Software
Interrupt Interrupt

N\

Non-Maskable

Maskable Interrupt
Interrupt



When the interrupt is activated, these actions take place

» Completes the current instruction that is in progress.

»Pushes the Flag register values on to the stack.

»Pushes the CS (code segment) value and IP (instruction pointer) value
of the return address on to the stack.

> |P Is loaded from the contents of the word location 00008H.

»CS 1s loaded from the contents of the next word location 0000AH.

Interrupt flag and trap flag are reset to 0.

Hardware interrupt Software interrupts (INT N)
NMI 256 types of software interrupt
INTR TYPE 0 (divide by zero interrupt)

TYPE 1 (single step execution)
TYPE 2 (non-maskable interrupt )
TYPE 3 (break point interrupt)
TYPE 4 (over flow interrupt)



MAINLINE
PROGRAM

e

PUSH FLAGS

CLEAR IF

CLEARTF

PUSH CS

PUSH IP

FETCH ISR ADDRESS

N

POP IP
POP CS
POP FLAGS

INTERRUPT
SERVICE
PROCEDURE

PUSH REGISTERS

. POP REGISTERS
IRET

Fig. 9.1 8086 interrupt response

Interrupt Priority
Divide Error, INT(n),INTO Highest
NMI
INTR
Single Step Lowest




INTERRUPT VECTOR TABLE

aAFFH Typea 255 pointer -

Available Inermmupt *

pointers (224) Type 33 pointer :

0B84 H {Available)
Type 32 pomnter -
[ o7F H Type 31 pointer -
(Resarved)
Resarvad intarmupt 4
poiners (27)
Type S pointer
014 H {Raserved)
‘.
- Type 4 pointer
Type 3 poinler
ooC H 1 -byte INT instruction
. Type 2 pointer :
Dedicated interrupt
pointers (5) ﬁ oos H Non — maskable
Type 1 pointer -
004 H Single - step

——— - ——

D Ty9s O pake:

NEW [P —» IP oftset L_ = Divide error

o0 H «—/— 16 Bitg ——m888»

Interrupt vector table



Block Diagram Architecture of 8259

CASO «—— Cascade Interrupt Mask Register

Buffer/
Compar

R 4 — Internal Bus
SP/EN




ICWS AND OCWS OF 8059

Ds D, D3

D

D4

Dg

As 1 LT

ADI

SNGL

i,

1 =1CW4 NEEDED
0 = NO iCwW4 NEEDED

i = SINGLE

0 = CASCADE MODE

CALL ADDRESS INTERVAL
1 = INTERVAL OF 4
0 = INTERVAL OF 8

1 = LEVEL TRIGGERED MODE
0 = EDGE TRIGGERED MODE

Az-Ag OF INTERRUPT

VECTOR ADDRESS
{(MCS - 80/85 MODE ONLY)

Fig. 14.76 Initialization command word 1 (ICW1)

Aqy5-Ag OF INTERRUPT VECTOR

-] ADDRESS (MCS 80/85 MODE)

T4-T3 OF INTERRUPT VECTOR
ADDRESS (8086/8088 MODE)

Fig. 14.77 Initialization command word 2 (ICW2)




ICW3 (MASTER DEVICE)

1= IR INPUT HAS A SLAVE
«| 0=IRINPUTDOES NOT |
HAVE A SLAVE

L_‘ v —
ICW3 (SLAVE DEVICE)
Ag D; Dg Dy Dy Dy D, Dy Dy
SLAVE ID
of[1]2]3]4]5]6]7]
of17of1]o]1]0]1
~olol1]1]olo]1]1
"olofofof1]1]1]+

Fig. 14.78 Initialization command word 3 (ICW3)



ICW4

Ay D, O; D, D, D, D, D, D,
‘ 1 ‘ 0 0 ‘ 0 |SFNM| BUF | M/S AEDI‘HF’M
‘ ] 1 - 8086/8088 Mode
0 - MC3-80/85 Mode
_,,|1 - Auto EOI
0 - Normal EOI
Yy Y
0 | X | Non-buffered mode
0 | Buffered mode/slave
1| 1 | Buffer mode/master
> 1 - special fully nested mode

0 - Not special fully nested mode

Fig. 9e.11: Initialisation command word 4
(Source: Intel Corporation)




Operational command word-ocw 1
and ocw 2

QCwW1
AD D7 D6 o5 (o Y] D3 D2 D1 o0
1 M7 | M8 MS N4 M3 M2 M1 MO
INTERRUPT MASK
0 = MASK RESET
ocw2
AQ D7 D6 DS 04 D3 D2 o1 Do
Q ®” S0 EQI 0 0 Lz Ly Lo
-~ IR LEVEL TO BE ACTED UPON
| o|1|2]l3|415|6]|7
—> 0| 1|O0o)]1|l0]l1]l0]| 1
~0|lo]lt1]l1]olo] 1] 1
»lo0o|o0ojojo|1])1]| 1] 1
Y v v
0! 1| 1| SPECIFIC EOI COMMAND
1 0| 1| ROTATE NO NON-SPECIFIC EOQI COMMAND
1] 0| 0| ROTATE IN AUTOMATIC ECI MODE (SET) AUTOMATIC ROTATION
0! 0| 0| ROTATE IN AUTOMATIC EOI MODE (CLEAR)
“ ROTAT | |
11 1] 1 ROTATE ON SPECIFIC EOQI COMMAND } R W
11 1] 0| *SETPRIORITY COMMAND
| 0] 1] 0| NOOPERATION S




Ay D; Dg Ds Dy D3 Dy

IO l 0 IESMMISMMI 0 | 1 l P

READ REGISTER COMMAND
0} 1 0 1
- 0|0 1 1
NO READ READ
ACTION | IRREG IS REG
ON NEXT | ONNEXT
RD PULSE | RD PULSE

1=POLL COMMAND
0 = NO POLL COMMAND

SPECIAL MASK MODE
=B E 0
= 0| 0 1 1
- | RESET SET
AcTioN | SPECIAL | SPECIAL
MASK MASK

Fig. 14.82 Operation Command word- 3 {OCW3)




INTRODUCTION TO
3061
MICROCONTROLLER
UNIT- 1V



DIFFERENCE BETWEEN MICROPROCESSOR AND
MICROCONTROLLER

Microcontroller .. Microprocessor
Microcontrollers are used to Microprocessors are used for big
execute a single task within an applications.
application.

Its designing and hardware cost is | Its designing and hardware cost is high.
low.

Easy to replace. Not so easy to replace.

It is built with CMOS technology, | Its power consumption is high because it has
which requires less power to to control the entire system

operate

It consists of CPU, RAM, ROM, It doesn’t consist of RAM, ROM, 1/O ports.
1/0 ports. It uses its pins to interface to peripheral

devices.




COMMON
MICROCONTROLLERS

e Motorola
*Atmel o 8-bit
ARM e 68HCO5
intel ¢ 68HCO8
*8-bit e 68HC11
*8XC42 e 16-bit
*MC348 e 68HC12
*MCS51 e 68HC16
*8xC251 e 32-bit
*16-bit o 683xx
*MCS96 e Texas Instruments
*MXS296 e TMS370, 16/32 bit
*National Semiconductor e MSP430, 16 bit
*COP8 o Zilog
*Microchip o 78
«12-bit instruction PIC e /86E02
14-bit instruction PIC
*PIC16F84

*16-bit instruction PIC
*NEC



BLOCK DIAGRAM OF 8051

External Interrupts

| Counter
Interrupt Control R | Inputs




EA
ALE
PSEM
XKTALL
XTALZ
RESET

Weco
GMD

ARCHITECTURE OF 8051

RRER

I TTT]

RRRR

L]

| |

RRRR

Arithmetic Special- = o
and PSwW Function = =
Logic Unit Registers = =
' _' RAM
B-8it Data and
B Address Bus E ;
1 3 &
DPTR
FPC DPH ROM
2 5
= o
I ] 1&-Bit Adress Bus
205 microcontrolls
= Special- -
Systemn A?ﬂ;e"rB“ Function f‘ﬁ =
Timing PESRES Registers =) o
. System Register 1E l
nterrupts P
Timer Bank 3 l
= PCON :
Data Buffers . SBUF
Register
Memory Contral Bank 2 =CcOoM I
| TCOMN 1
1 Register TMOD l
Bank 1 TLO l
i THO !
| Register TL1
ank
! S TH1 I
I. Internal RAM Structure :
|

.-_———-—_———-———-_1——————————.

L]
AC-AT
Do-o 7

1

1o
ARB-AL1S

o
Interrupt
Counter
Serial Data
RD-WR




Microcontroller Architectures
Memory
Address Bus J
Program
CPU | DataBus |+ Data Von Neumann
e .
N Architecture
Memory
Address Bus .
Program
GPt [ TsichBus | Harvard
Aol B Architecture
Data Bus Data




OxFF

0x80
Ox7F

0x30
0x2F

0x20
Ox1F

0x00

ON-CHIP DATA MEMORY: RAM

Upper 128 RAM Special Function
(Indirect Addressing Register's
Only) (Diract Addressing Only)

]
(Direct and Indirect

Addressing) Lower 126 RAM
> (Direct and Indrect

Addressing)

Bit-addressable locations

128 Bytes of Internal RAM

Byte
address Bit address
7F
General
purpose
RAM

18 Bank 3

17

10 Bank 2

OF

08 Bank 1

07 Default register
00 bank for RO-R7

RAM



R BANKS

N
4

IST]

G

Rl

Bank 3

Bank 2

Bank |

Bank ()

R7
R6
e e
DI RS
C] R4
Rl R}
—
Al R2
——
| Rl
——

e
(= -~

i~ ~f5 W = 5 @ =—




PROGRAM STATUS WORD OF 8051

Processor Status Word

PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 PSW.0

CY AC FO RS1 RSO ov P

f

» Register bank Select bit 0

Register bank Select bit 1

]

RS1 RSO Rgg:ﬁfer Register Bank Status

0 0 0 = Register Bank 0 is selected
0 1 1 - Register Bank 1 is selected
1 0 2 - Register Bank 2 is selected
1 1 3 = Register Bank 3 is selected

www.CircuitsToday.com



2F
2E
2D
2C
2B
2A
29
28
27
26
25
24
23
22
21
20

1A
10
OF 08
07 |06 |05 (04 |03 [02 |01 | QO

BIT ADDRESSABLE MEMORY

20h — 2Fh (16 locations X 8-bits = 128 hits)

Bit addressing:

mov C, 1Ah
or
mov C, 23h.2
OxFF Upper 128 RAM Special Function
{Indirect Addressing Reqister's
0x80 COnly) (Direct Addressing Only)
0x7F \
{Direct and Indirect
Addressing) Lower 128 RAM

0x30 > {Direct and Indirect
Addressing)




SPECIAL FUNCTION REGISTERS

DATA registers
CONTROL registers

e Timers

e Serial ports

e Interrupt system
e Analog to Digital
converter

e Digital to Analog
converter

o EtC.

Upper 128 RAM Special Function

(Indirect Addressing Register's
Only) (Direct Addressing Only)
(Cirect and Indirect
Addressing)
Bit Addressable
General Purpose
Registers y,

Addresses 80h — FFh

Direct Addressing
used to access SPRs




ON-CHIP MEMORY: PROGRAM/DATA

PROGRAM/DATA MEMORY DATA MEMORY (RAM)
(FLASH) INTERNAL DATA ADDEESS SPACE
0x1007F|  Scrachpad Memory OxFF Upper 128 RAM Special Function
Ox 10000 (DATA only) (Indirect Addressing Fegister's
OxFFFF Ox&0 Cinly) (Direct Addressing Only)
OxFEDO RESERVED Ox7F N\
0xFDFF (Direct and Indirect
Addressing) Lower 128 RAM
Ox30 (Direct and Indirect
FLASH Ox2F > Addressing)
(In-System 0x20
Programmable in 512 Ox1F
Byte Sectors) Ox00

0x0000




PIN DIAGRAM OF 8051

1.0 1 WV CC
P 1. 2 PO.0O (ADOQ)
1.2 3 PO.1 (AD1)
F1.3 4 PO.2 (ADZ2)
1.4 5 PO.2 (AD3)
F1.5 6 PO.4 (ADA4a)
P1.6 7 PO.5 (ADS5)
P1.7 8 PO.6 (ADGBG)
RST G PO.7 (ADT7)

(IRXD)Y P3.0 10 EA/VPP
(TXD)Y P3.1 11 ALE/PROG

(TNTO) P3.2 12 PSEN

(TNT1) P3.3 13 P2.7 (A15)
(TO)Y P3.4 14 P2.6 (A14)
(T1)y P32.5 15 P2.5 (A13)
(WR) P3.6 16 P2.4 (A12)
(RD) P3.7 17 P2.2 (A11)
X TAL 18 P2.2 (A10)
XK TAaL 19 P2.1 (A9)
G MND 20 P2.0 (AS8)




PORT STRUCTURE

s3:: 3z

i
l

pull-up resistors = 10k

+Vce

élﬂk

=] o+ H O



PORT STRUCTURE

How to read port pin?

MOV P1, BOFFH; toconfigured port asinput port, we
must write 1{logic high) to that ports

MOV A, P1 v
Read latch cC
b TB2 - Load (L1)
{ ‘l 0a
Internal I
CPUbus—"_n‘D QP R | nf’.l’x
Write to latch é Clk Q ! M1
- ..
Read pin \rj e

MOV A, P11



PORT STRUCTURE

Writing ““1” to Output Pin P1.X

Read latch Vo
Load(L1) 2. output pin is
M i Vce
1. write a 1 to the pin L
Internal CPU ® - p l.. X
bus pin
output 1
Write to latch < M1
<] TB1
Read pin

8051 IC



ADDRESSING MODES OF 8051

1)Immediate addressing mode
MOVA, #0AFH;
MOVR3, #45H,;
MOVDPTR, #FEOOH;
2)Register addressing mode
MOVA, R5;
MOVR2, #45H,
MOVRO, A;
3) Direct addressing mod
MOV80H, R6;
MOVR2, 45H;
MOVRO, 05H;

4) Indirect addressing mode
MOVOE5H, @RO;
MOV@R1, 80H;
MOVXA, @R1;
MOV@DPTR, A;




5) Indexed addressing mode
MOVCA, @A+PC;
MOVCA, @A+DPTR;

Indexed Addressing Mode

Instruction Opcode Bytes Cycles
MOVC A,@A +DPTR 93H 1 2
Program Memory
s e g
¥ ACC | Data |
ACC 02 1 | h
Data
- ADD
01 FE DPTR
DPH DPL
93
01FC

L wPC=PC+1




INSTRUCTION SET OF 8051

DATA ARITHMETIC LOGICAL BOOLEAN PROGRAM
TRANSFER BRANCHING
MOV ADD ANL CLR LIMP
MOVC ADDC ORL SETB AJMP
MOVX SUBB XRL MOV SIMP
PUSH INC CLR JC JZ
POP DEC CPL JNC JNZ
XCH MUL RL JB CJINE
XCHD DIV RLC JNB DINZ
DAA RR JBC NOP
RRC ANL LCALL
SWAP ORL ACALL
CPL RET
RETI

JMP



_____________________ :

2051 E Data Bus

I
_ l Read IWritE TRf_-ad
Read]| Wnte ! _ _
_ l Addressing Instruction Data Data
A Register :
i
i
: MOVX A @Rp
i
ROorEl I e ATTTLI It » | External Internal

i
i

DPTR. __fl*-l:{}}?i_%-_@[}f_’r_fﬂ_ET_I_'*!QE_E@D_PIELE; ROM
i

PTR + e »

D A ' MOVC A @A+ DPTR
i
i
F A 00 e e e e _~

Fe- A | MOVC A, @A +PC

i




SPECIAL FUNCTION REGISTERS OF 8051

T ACC ' T R | EOH

B B Register (for Anithmetic) FOH
DPH Addressing External Memorv 83H
DPL Addressing External Memorv 82H

IE Interrupt Enable Control A8H

1P Interrupt Priority BSH

PO PORT 0 Latch 80H

P1 PORT 1 Latch 90H

P2 PORT 2 Latch AOH

P3 PORT 3 Latch BOH

PCON Power Control 87H
PSW Program Status Word DOH
SCON Serial Port Control 98H
SBUF Serial Port Data Buffer 99H
SP Stack Pointer 81H
TMOD Timer / Counter Mode Control 89H
TCON Timer / Counter Control 88H
TLO Timer 0 LOW Byte SAH
THO Timer 0 HIGH Byvte 8CH
TL1 Timer 1 LOW Byte SBH
THI1 Timer 1 HIGH Bvte SDH




3051 REAL TIME
CONTROL
UNIT-V




A timer is a specialized type of clock which is used to measure time intervals. A
timer that counts from zero upwards for measuring time elapsed is often called

a stopwatch. It is a device that counts down from a specified time interval and
used to generate a time delay, for example, an hourglass is a timer.

A counter is a device that stores (and sometimes displays) the number of times a
particular event or process occurred, with respect to a clock signal. It is used to
count the events happening outside the microcontroller. In electronics, counters
can be implemented quite easily using register-type circuits such as a flip-flop.

DIFFERENCES BETWEEN TIMERS/COUNTERS

Timer Counter
The register incremented for every The register is incremented considering 1
machine cycle. to O transition at its corresponding to an

external input pin (TO, T1).

Maximum count rate is 1/12 of the Maximum count rate is 1/24 of the
oscillator frequency. oscillator frequency.

A timer uses the frequency of the internal A counter uses an external signal to count
clock, and generates delay. pulses.



TMOD : Timer/Counter Mode Control Register (Not Bit Addressable)

GATE (o) M1 MU GATE () MI M
TIMER | TIMER 0
GATE When TRx (in TCON) is set and GATE = 1. TIMER/COUNTERx will run only while INTx pin is high
(hardware control). When GATE = 0, TIMER/COUNTERx will run only while TRx = 1 (software
control).
CT Timer or Counter selector. Cleared for Timer operation (input from internal system clock). Set for
Counter operation (input from Tx input pin).
M1 Mode selector bit (NOTE 1).
MO Mode selector bit (NOTE 1).
Note 1 :
M1 MO OPERATING MODI
(] () i) [3-bat Timer
(] | | [6-bit Timer/Counter
| 0 2 S-bit Auto-Reload Timer/Counter
| | 3 (Timer 0) TLO 15 an 8~bit Timer/Counter controlled by the standard Tuner U control
bits, THO 15 an 8-bit Timer and 1s controlled by Timer | control bits.
| | 3 (Timer 1) Timer/Counter | stopped.




MODES OF TIMERS/COUNTERS

Pulilse
input
(Figure 2.11)

Pulse
Iinput
(Figure 2_11)

Pulse
Input
(Figure 2.1 1)

Pulse
Input
(Figure 2_11)

712

TR1 8t
Iin TCON

TLX S Bits THX 8 Bits TFX

Pr———— lOAterTOPT

Timer Mode O 13 - Bit Timer/Counter

TLX 8 Bits THX 8 Bits TFX

h———  IOYterrupt

Timer Mode 1 186 -Bit Timer/Counter

~= TLX 8 Bits TFX

p—— i yterruopt

N[: ~g- Reload TLX

THX 8 Bits

Timer Mode 2 Auto- Reload of TL fromm TH

—=- TLO 8 Bits TFO

h— | terrupt

- THO 8 Bits TF1

Pr———— Oy terruopt

Timer Mode 3 Two 8 - Bit Timers Using Timer O




TCON : Timer/Counter Control Register (Bit Addressable)

1F]

IR
10

TR0
IE]

[T1

[EO

[0

TFI TRI ['F TRO IE] IT] [0} [T0

TCON.7  Timer I overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by
hardware as processor vectors to the interrupt service routine.

TCON.6  Timer | run control bit. Set/cleared by software to turn Timer/Counter ON/OFF.,

TCON.5  Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by
hardware as processor vectors to the service routine.

TCON.4  Timer 0 run control bit. Set/cleared by software to turn Timer/Counter (0 ON/OFF,

TCON.3  External Interrupt 1 edge flag. Set by hardware when External interrupt edge is detected. Cleared
by hardware when interrupt is processed.

TCON.2 Interrupt 1 tvpe control bit. Set/cleared by software to specify falling edge/flow level triggered
Lxternal Interrupt.

TCON.1  External Interrupt 0 edge flag. Set by hardware when External Interrupt edge detected. Cleared
by hardware when interrupt is processed.

TCON.O  Interrupt 0 type control bit. Set/cleared by software to specify falling edge/low level triggered

[xternal Interrupt.



INTERNAL STRUCTURE OF

TIMER/COUNTER

Timer

Oscillator  |_o | +12d
Frequency
C/T = 0 (TMOD Timer Operation)

T1/0 Input Pin

TR1/Q BitIn TCON =———————

)

Counter JC-"T - 1 ﬂHﬂD Counter Operation}

-

B T Timer Stages

Gate Bit In TMOD
INT 170 Input Pin

|




INTERRUPT STRUCTURE OF 8051
External interrupts
1)INTO
2)INT1
Internal interrupts
1)Timer0 (TFO)
2)Timerl(TF1)
Serial communication interrupts
Transmit interrupt (T1)
Receive interrupt (RI)

|IE &IP Registers are used to enable and disable these
Interrupts.




IE Register — Interrupt Enable Register

7 6 5 q 3 2 1 O

EA [ x [ x | es [ ET2 [ Exa | ETO | Exo |

*3* EXO- Enable/Disable — External Interrupt O

** ETO- Enable/Disable — Timer O overflow Interrupt

¢

>

* EX1- Enable/Disable — External Interrupt 1

*ET1- Enable/Disable — Timer 1 overflow Interrupt
**ES -Enable/Disable — Serial port Interrupt

* EA - Enable/Disable — All interrupts

Examples —

-Disable all interrupts

CLR IE. 7

4

-

I

I

¢

>

‘

Interrupt Priority Register
7 (S 5 a4 3 2 1 O

IP- [x [ x [ x | s [ P2 | pxa | PO | pxo |

PXO — Priority — External Interrupt O
PTO — Priority — Timer O overflow
PX1 — Priority — External Interrupt 1
PT1 — Priority — Timer 1 overflow
PS - Priority —Serial port Interrupt

Example — To place Timer O, external interrupt 1 at high
priority and other interrupts at low priority.

IP = 0000 0110 = O6H SETB IP.1
MOV 1P # 06H|°" seTB IP.2



INTERRUPT PRIORITIES AND VECTOR
ADDRESSES

Interrupt Number | Interrupt Description Address
0 EXTERNAL INT 0 0003h
1 TIMER/COUNTER 0 000Bh
2 EXTERNAL INT 1 0013h
3 TIMER/COUNTER 1 001Bh
4 SERIAL PORT 0023h

Interrupt Flag Bits

Interrupt Flag SFR Register
and Bit Position
External 0 IEO TCON.1
External 1 IE1 TCON.3
Timer 1 TF1 TCON.7
Timer 0 TFO TCON.5
Serial port Tl SCON.1
Serial port RI SCON.O




8051 INTERRUPT STRUCTURE

8051 Interrupt structure

INPUT INTERRUPT
REQUEST SOURCE GLOBAL PRIORITY
REGISTER ENABLE ENABLE REGGISTER HARDWARE
POLLING
TCONI1 IEO ClP()
EX0
HIGH
EXO0 PXO0
TCONS IEO IP1 SOURCE
INT TO O—0; T
TIMER || ol 0" Oy
TCON3 1E2 P2,
EX1
EX?2 PX1
TCON7 IE3 1P3
INT T1 —o/ 7 Q=0 SOURCE
TIMER  |—» O — O — O _| ID
ETI PTI
SCONO IE4 P4
SERIAL TX —o/ P OO
SCONI1 — O] — O > O\O—O
RX ES PS




MODES OF DATA TRANSFER
SCHEMES

OATA TRANSFER SCHEME

PARALLEL DATA SERIAL DATA

J

l

| ACCESS
SYHCHRONOUS SINGLE INTERRURPT MULTIINTERRUPT
LINE LINE

ASYHCHRONGU S



SBUF (Serial Control, Addresses 9%h):

e ysed to send and receive data via the on-
board serial port.

 These are two physical registers — one as
Write only and the other is Read only

 When SBUF is written with data Transmission
starts

 To receive a data byte, 8051 has to be
enabled explicitly for “Receive” operation

TxD

SBUF

RxD

SBUF




SCON REGISTER OF 8051

| SMO | SM1 | SM2 | REN | TBS RBS Tl RI

SMO  SCON.Y Serial port mode specifier

SM1 SCON.6 Serial port mode specifier

SM2 SCON.5 Used for multiprocessor communication. (Make it 0.)

REN SCONM4 Set/cleared by software to enable/disable reception.

TB8 SCON.3 Mot widely used.

RB8 SCON.2 Not widely used.

T SCON.1 Transmit interrupt flag. Set by hardwar: at the beginning of
the stop bit in mode 1. Must be cleared by software.

RI SCON.O Receive interrupt flag. Set by hardware halfway through the

stop bit time in mode 1. Must be cleared by software.

|Note:  Make SM2, TBS, and RB8 = 0.

__SMO__| _sM1__| Operation | Description | __Baud Rate Source

Mode 0 8-bit UART  1/12 the quartz frequency
Mode 1 8-bit UART  Determined by the timer 1
Mode 2 9-bit UART  1/32 the quartz frequency

0
0
1
1 Mode O 9-bit UART  Determined by the timer 1

= O = O



PCON Register

SMOD Double baud rate. If Timer 1 1s used to generate
baud and SMOD=1, the baud rate i1s doubled

when the Serial Port 1s used 1n modes 1,2,3.
GF1,GF0 General purpose flag bit.

PD Power down bit. Setting this bit activates “Power
Down” operation 1in the 80C51BH. (precedence)

IDL Idle Mode bit. Setting this bit activates “Idle Mode”
operation in the 80C51BH.

(MSB) (LSB)
sMob| - | - T - JGF1[GF2] PD [ IDL

* PCON 1s not bit-addressable. See Appendix H. p410

383



PROGRAMMING SERIEL
COMMUNICATION INTERRUPTS

Write a program for the 8051 to transfer letter “A”™ serially at 4800 baud, continuously.

Solution;
MOV TMOD,#20H ;Timer 1, mode 2{auto-reload)
MOV  TH1,4-6 ;4800 baud rate
MOV  SCON,#50H ;8-bit, 1 stop, REN enabled
SETB TR1 ;start Timer 1
AGAIN: MOV SBUF,#"A" :letter "A" to be transferred
HERE: JNBE TI,HERE :wait for the last bit
CLR TI ;clear TI for next char

SIMP AGAIN +keep sending A



Write a program to transfer the message “YES” serially at 9600
baud, 8-bit data, 1 stop bit. Do this continuously.

Solution:

AGAIN:

jemme- gserial data transfer

HERE :

MOV TMOD, #20H

MOV TH1,#-3

MOV SCON, #50H

SETE TR1
MOV A #"Y"
ACALL TERANS

MOV A, B"E"
ACALL TRANS
MOV A g"s5"
ACALL TRANS
SJMP AGAILN

MOV SBUF, A
JHE TI,HERE
CLR TI

RET

;Timer 1, mode 2

;9600 baud

;:8-bit, 1 stop bit, REN enabled
;start Timer 1

stransfer "Y©

;transfer "E"
rtransfer *S*

;keep doing it

subroutine

:load SBUF

;wait for last bit to transfer
;get ready for next byte



Program the 8051 to receive bytes of data serially, and put them in PI.
Set the baud rate at 4800, 8-bit data, and 1 stop bit.

Solution:
MOV TMOD,%#20H ;Timer 1, mode 2{auto-reload)
MOV THL,#-6 ;4800 baud
MOV  SCON,4#50H ;8-bit, 1 stop, REN enabled
SETE TR1 ;start Timer 1
HERE: JNB RI,HERE ;walt for char te come 1n
MOV A, SBUF jgave 1ncoming byte 10 A
MOV P1,A isend to port 1
CLR RI ;get ready to receive next byte

SIMP HERE ;keep getting data



PROGRAMMING TIMERS OF 8051

In the following program, we are creating a square wave of 50% duty cycle (with equal portions high and
low) on the P1.5 bit. Timer O is used to generate the time delay. Analyze the program.

MOV TMCD, #01 ;Timer 0, mode 1(16-bit mode)
HERE: MOV TLO, #0F2H ;TLO = F2H, the Low byte
MOV THO, #0FFH +THO = FFH, the High byte
CPL F1.5 ;toggle P1.5
ACALL DELAY
SJMP HERE :load TH, TL again
i —delay using Timer 0
DELAY :
SETE TRO ;start Timer 0
AGAIN: JNB  TFQ,AGAIN ;monitor Timer 0 flag until
it rolls over
CLR TR{ ;stop Timer 0
CLR TFO ;clear Timer 0 flag

RET



Assume that XTAL = 11.0592 MHz. What value do we need to load

into the timer’s registers 1f we want to have a time delay of 5 ms
(milliseconds)? Show the program for Timer O to create a pulse
width of 5 ms on P2.3.

Solution:

Since XTAL = 11.0592 MHz,

» the counter counts up every 1.085 us.

» This means that out of many 1.085 us intervals we must make a 5
ms pulse.

» To get that, we divide one by the other.

» We need 5 ms/1.085 us = 4608 clocks.

» To achieve that we need to load

» TL and TH with the value 65536 — 4608 = 60928 = EEOOH.

» Therefore, we have TH = EE and TL = 00



HERE :

AGAIN:

CLR
MOV
MOV
MOV
SETB
SETB
JNB

CLR
CLR
CLR

P2.3
TMOD, 401
TLO, #0
THO, #OEEH
p2.3

TR0

TFO, AGAIN

P2.3
TR0
TF0

;clear P2.3

;Timer 0, mode 1 (16-bit mode)
'TLO0 = 0, Low byte

;THO = EE( hex), High byte
;SET P2.3 high

sstart Timer 0

;monitor Timer 0 flag
aunell 1t rolls over
;clear P2.3

;stop Timer 0

sclear Timer 0 flag



Assuming that XTAL = 11.0592 MHz, write a program to generate a square wave of 2 kHz
frequency on pin PI .5.

Solution:

DT=1/f=1/2kHz =500 us the period of the square wave.

2)1/2 of it for the high and low portions of the pulse is 250 us.

3)250 us / 1.085 us = 230 and 65536 — 230 = 65306. which in hex is FF1AH.

4)TL = 1AH and TH = FFH. all in hex. The program is as follows.

MOV TMOD, 8104 Timer 1, mode 1(16-bit)
AGAIN: MOV, TL1,®1AH TL1=2AH, Low byte
MOV THL,&0FFH THL=FFH, High byt
SETR TRl start Timer 1
BACK : JNB TF1,BACK ;stay until timer rolls over
CLR TR stor Timer 1
CPL  P1.5 scomplement P1.5 to get hi, lo
CLR TFl ;clear Timer 1 flag
SIME  AGAIN 'reload timer since mode 1

‘15 not auto-reload



PROGRAMMING EXTERNAL
INTERRUPTS OF 8051




Assume that the INT1 pin is connected to a switch that is normally high. Whenever it goes
low, it should turn on an LED. The LED is connected to PI .3 and is normally off. When it is
turned on it should stay on for a fraction of a second. As long as the switch is pressed low, the
LED should stay on.

ORI Oo0O0OH

LJMPF MAITHN s byvpass interruj_::t wectolr table
i==-I8R for hardware interrupt INTI to turn on the LED

ORG DO01L3H s INTL ISR

SETE P1.3 s turn on LED

g L T B3 ,8#25% sload counter
BRACE : DIINZE ER3 ., BACEK skeepn LED on for a while

LR Pl.3 seurn off che LED

RETI sreturn from ISR

;==-MATHN program for initialization
DRS SI0OH

MATHM : s LT IE.#100001L00B senakble esxternal INTL
HERE : SJMEP HERE setay here until incerrupted
EMNL

Pressing the switch will turn the LED on. If it is kept activated, the LED stays on.

. BOSE
to
PL3[—— LED

\k—————[NTI




Assuming that pin 3.3 (INT1) is connected to a pulse generator, write a program in which the
falling edge of the pulse will send a high to P1.3, which is connected to an LED (or buzzer).
In other words, the LED is turned on and off at the same rate as the pulses are applied to the
INT1 pin.

Solution:
ORG QO00H
LIJMP MAIN
;--ISR for hardware interrupt INT1 to turn on the LED
QRG  O0C13H ;INT1 ISR
SETB Pl.3 ;turn on the LED
MOV R3, 8255
BACK: DJNZ R3,BACK :keep the LED on for a while
CLR P1.3 ;turn off the LED
RETI ;return from ISR
;--MAIN program for initialization
ORG 30H
MAIN: SETB TCON.Z2 ,make INT1 edge-trigger interrupt
_ MOV  IE,#10000100B ;enable External INTI
HERE: SJMP HERE ;stay here until interrupted

END



