
PYTHON PROGRAMMING

B.Tech I Year II Sem

Dr Ayesha Banu
Assistant Professor
Department of CSE

UNIT – I
Topic 1: Introduction to Python: What is Python ???
 Python has become the most popular programming language

widely being used today.
 People are shifting to python nowadays from other

programming languages like c++, java, c# (c sharp).
Why people are showing interest towards python ??

Some Features of Python which make it popular

Python Logo

1. Simple: Easy to write compared to other languages. Python
is a very developer-friendly language which means that
anyone and everyone can learn to code it in a couple of hours
or days. As compared to other object-oriented programming
languages like Java, C, C++, and C#, Python is one of the
easiest to learn.

2. Open Source: it is freely downloadable and all executable
versions of python are easily and openly available on internet.
Python is an open-source programming language which
means that anyone can create and contribute to its
development. Python has an online forum where thousands
of coders gather daily to improve this language further. Along
with this Python is free to download and use in any operating
system, be it Windows, Mac or Linux.

3. GUI: Supports Graphical User Interface programming. GUI is
one of the key aspects of any programming language
because it has the ability to code and make the results
more visual.

4. Object-Oriented: One of the key aspects of Python is
its object-oriented approach. This basically means that
Python recognizes the concept of class and object
encapsulation thus allowing programs to be efficient in the
long run.

5.High-Level Language: Python has been designed to be a high-
level programming language, which means that when you
code in Python you don’t need to be aware of the coding
structure, architecture as well as memory management.

6. Interpreted: This means that the python interpreter executes
codes one line at a time. whereas the compiler executes the
code entirely and lists all possible errors at a time. That’s why
python shows only one error message at a time. This will help
you to clear errors easily.

7. Large Standard Library: Out of the box, Python comes inbuilt
with a large number of standard libraries that can be
imported at any instance and be used in a specific program.
The presence of libraries also makes sure that you don’t need
to write all the code yourself and can import the same from
those that already exist in the libraries.

Apart from these features python is
 Highly Portable: Suppose you are running Python on

Windows and you need to shift the same to either a Mac or a
Linux system, then you can easily achieve the same in Python
without having to worry about changing the code. This is not
possible in other programming languages, thus making
Python one of the most portable languages available in the
industry.

 Dynamically-Typed-Language: Python is a dynamically-typed
language. That means the type (for example- int, double,
long, etc.) for a variable is decided at run time not in advance
because of this feature we don’t need to specify the type of
variable.

 Expressive Language: Python can perform complex tasks using
a few lines of code.

Variables are declared in C. Python has no declaration.

C doesn’t have native OOP. Python has OOP which is a part of
language.

Pointers are available in C language. No pointers functionality is available in
Python.

C is a compiled language. Python is an interpreted language.

There is a limited number of built-in
functions available in C.

There is a large library of built-in
functions in Python.

Declaring of variable type in C is
necessary condition.

There is no need to declare a type of
variable in Python.

C does not have complex data
structures.

Python has some complex data
structures.

C is statically typed. Python is dynamically typed.

Syntax of C is harder than python
because of which programmers prefer
to use python instead of C

It is easy to learn, write and read
Python programs than C.

C programs are saved with .c
extension.

Python programs are saved by .py
extension.

In C language testing and debugging is
harder.

In Python, testing and debugging is not
harder than C.

C is complex than Python. Python is much easier than C.

Therefore Python is a Open Source , Portable, Powerful,
Extensible and Easy Programming Language

Topic-2: What is Python Good for ?? Applications of Python
With its wide support and extensive features Python is very

good and effective for large number of applications and tasks
including:

Mathematics: Python is a versatile language that has various
applications in the field of mathematics with its robust
mathematical libraries. There are several libraries that can be
used to carry out mathematical operations with Python.

1. Math: This is the most basic math module that is available in
Python. It covers basic mathematical operations like sum,
exponential, modulus, etc.

2. Numpy: The numpy library in Python is most widely used for
carrying out mathematical operations that involve matrices.

3. SciPy: This python math library provides all the scientific
tools for Python. It contains various models for
mathematical optimization, linear algebra, Fourier
Transforms, etc.

 Text Processing: Python Programming can be used to process
text data for the requirements in various textual data analysis.
A very important area of application of such text processing
ability of python is for NLP (Natural Language Processing).
NLP is used in search engines, newspaper feed analysis and
more recently for voice -based applications like Siri and Alexa.
Python's Natural Language Toolkit (NLTK) is a group of
libraries that can be used for creating such Text Processing
systems.

 Rapid Application Development: python can be effectively
used for developing any application quickly is less amount of
time. Python can also be applied for cross platform
dvelopment.

Topic -3: History of Python Programming Language
 Python was created by Guido van Rossum, a Dutch

programmer.
 He was also known as the "Benevolent dictator for life"

(BDFL) for python.
 He Worked at the Centrum Wiskunde & Informatica (CWI) in

the Netherlands.

• there was a popular BBC comedy TV show called “Monty
Python’s Flying Circus” and Van Rossum happened to be a big
fan of that show.

• At the time when he began implementing Python, he needed
a name that was short, unique, and slightly mysterious, so he
decided to call the language “Python.”

• The first ever version of Python (i.e., Python 1.0) was
introduced in 1991.

• Python 2.0 was released on 16 October 2000 and had many
major new features.

• Python 3.0 (initially called Python 3000 or py3k) was released
on 3 December 2008 after a long testing period.

• The language’s core philosophy is summarized in the
document “The Zen of Python”.

Thrust Areas of Python
1. Academia: Python is being offered as the introductory

programming language in the majority of the computer
science departments at various American universities. Python
is being adapted by academia for research purposes.

2. Scientific Tools: Scientific tools are essential for simulating and
analyzing complex systems. The Python ecosystem consists of
these core scientific packages, namely SciPy library, NumPy,
Jupyter, Sympy and Matplotlib. Most of these tools are
available under Berkeley Software Distribution (BSD) license
and can be used without any restrictions.

3. Machine Learning: Many machine-learning algorithms and
techniques have been developed that allow computers to
learn. Machine Learning has its origin in Computer Science and
Statistics. Scikit- Learn is a well-known Machine Learning tool
built on top of other Python scientific tools like NumPy, SciPy
and Matplotlib.

4. Data Analysis: Pandas library changed the landscape of data
analysis in Python. Pandas is built on top of NumPy and has
two important data structures, namely Series and
DataFrame. Pandas can be used to read Comma-Separated
Values (CSV) files, Microsoft Excel, Structured Query
Language (SQL) database and Hierarchical Data Format
(HDF5) format files.

5. Statistics: Statsmodels is a Python library used for statistical
analysis. It supports various models and features like linear
aggression models, generalized linear models, discrete
choice models and functions for time series analysis.

6. Cloud Computing: OpenStack is entirely written in Python
and is used to create a scalable private and public cloud.

4: Execute Python Program: Python Distributions and IDE

 IDLE (short for Integrated Development and Learning
Environment)is an integrated development
environment for Python. Every Python installation comes with
an IDLE or even IDE. These are a class of applications that
help you write code more efficiently. While there are
many IDEs for you to choose from, Python IDLE is very bare-
bones, which makes it the perfect tool for a beginning
programmer.

https://www.python.org/
 Online python compilers:

 Google colab: Colab is a Python development environment
that runs in the browser using Google Cloud.

 Anaconda is a distribution of the Python and R programming
languages for scientific computing (data science, machine
learning applications, large-scale data processing, predictive
analytics, etc.). The distribution includes data-science
packages suitable for Windows, Linux, and macOS. It is
developed and maintained by Anaconda, Inc., which was
founded by Peter Wang and Travis Oliphant in 2012.

 PyCharm is a dedicated Python Integrated Development
Environment (IDE) providing a wide range of essential tools
for Python developers, tightly integrated to create a
convenient environment for productive Python, web,
and data science development.

 Jupyter Notebook is an environment that we can use to
experiment with Python interactively . It allows you to share
live Python code with others .

Assignment 1:

1. Write or explain the different features of python which
makes this language easy and popular?

2. Explain with examples where ever required the
differences between C and Python programming
languages ?

3. Explain briefly the history and major applications of
python ?

Identifiers

 An identifier is a name given to a variable, function, class or
module. Identifiers may be one or more characters.

 Identifiers can be a combination of letters in lowercase (a to
z) or uppercase (A to Z) or digits (0 to 9) or an underscore (_).

• A Python identifier can begin with an alphabet (A – Z and
a – z and _) but an identifier cannot start with a digit.

• Keywords cannot be used as identifiers.
• We cannot use spaces and special symbols like !, @, #, $,

% etc. as identifiers.
• Identifier can be of any length.

Keywords
Keywords are a list of reserved words that have predefined
meaning. Keywords are special vocabulary and cannot be
used by programmers as identifiers for variables, functions,
constants or with any identifier name. Attempting to use a
keyword as an identifier name will cause an error.

Variables
• Variable is a named placeholder to hold any type of data

which the program can use to assign and modify during the
course of execution.

• In Python, there is no need to declare a variable explicitly by
specifying whether the variable is an integer or a float or any
other type.

• To define a new variable in Python, we simply assign a value
to a name.

• Variable names can consist of any number of letters,
underscores and digits.

• Variable should not start with a number.
• Python Keywords are not allowed as variable names.
• Variable names are case-sensitive.

Assigning Values to Variables
• The general format for assigning values to variables is as

follows:
variable_name = expression

• The equal sign (=) also known as simple assignment operator
is used to assign values to variables.

Example: x =100
y = 13.4
name ="Python“

We do not declare the data type for any variable. Python
automatically gives the data type to the variables.

➀ integer type value is assigned to a variable x
➁ float type value has been assigned to variable y and
➂ string type value is assigned to variable name.

To display or print the assigned variable values we write
print(x)
print(y)
print(name)

OUTPUT
100
13.4
python

#include <stdio.h>
int main()
{
int x=100;
printf("%d\n",x);
float y=13.4;
printf("%f\n",y);
char name[10]="python";
printf("%s\n",name);
return 0;
}

• In Python, not only the value of a variable may change during
program execution but also the type of data that is assigned.

• You can assign an integer value to a variable, use it as an
integer for a while and then assign a string to the variable.

• A new assignment overrides any previous assignments.

x =100
print(x)
x=15.6
print(x)
x="hai"
print(x)

OUTPUT

100
15.6
hai

Python allows us to assign a single value to several variables
simultaneously.

a = b = c =1
print(a)
print(b)
print(c)

a, b,c=10,20,30
a=10,b=20,c=30

Operators
• Operators are symbols, such as +, –, =, >, and <, that perform

certain mathematical or logical operation to manipulate data
values and produce a result based on some rules.

• An operator manipulates the data values called operands.
• Python language supports a wide range of operators.

1. Arithmetic Operators
2. Assignment Operators
3. Comparison Operators
4. Logical Operators
5. Bitwise Operators

1. Arithmetic Operators:
Arithmetic operators are used to execute arithmetic operations
such as addition, subtraction, division, multiplication etc. The
following TABLE shows all the arithmetic operators supported by
python.

2. Assignment Operators
• Assignment operators are used for assigning the values

generated after evaluating the right operand to the left
operand.

• Assignment operation always works from right to left.
• Assignment operators are either simple assignment operator

or compound assignment operators.
• Simple assignment is done with the equal sign (=) and simply

assigns the value of its right operand to the variable on the
left.

x = 5
x = x + 1
print(x)

6

• Compound assignment operators support shorthand notation for
avoiding the repetition of the left-side variable on the right side.

• For example, the statement
x = x + 1

• can be written x += 1

3. Comparison Operators
• When the values of two operands are to be compared then

comparison operators are used.
• The output of these comparison operators is always a

Boolean value, either True or False.
• The operands can be Numbers or Strings or Boolean values.

4. Logical Operators
• The logical operators are used for comparing the logical

values of their operands and to return the resulting logical
value.

• The result of the logical operator is always a Boolean value,
True or False.

5. Bitwise Operators
• Bitwise operators treat their operands as a sequence of bits

(zeroes and ones) and perform bit by bit operation.
• For example, the decimal number ten has a binary

representation of 1010.
• Bitwise operators perform their operations on such binary

representations, but they return standard Python numerical
values.

Precedence and Associativity
• Operator precedence determines the way in which operators

are parsed with respect to each other.
• Associativity determines the way in which operators of the

same precedence are parsed.

Data Types
Data types specify the type of data like numbers and characters

to be stored and manipulated within a program.

 Numeric Types: int, float, complex
 Boolean Type: bool
 Text Type: str
 Special data type: None
 Sequence Types: list, tuple, range
 Mapping Type: dict
 Set Types: set, frozenset

Numeric data type
• Integers, floating point numbers and complex numbers fall

under Python numbers category. Complex numbers are
written in the form, x + yj, where x is the real part and y is
the imaginary part.

• To know the data type of any variable we use the keyword
type

Boolean
• Booleans are very useful and essential when we start using

conditional statements. The Boolean values, True and False
are treated as reserved words.

Strings
• A string consists of a sequence of one or more characters, which

can include letters, numbers, and other types of characters. A
string can also contain spaces.

• We can use single quotes or double quotes to represent strings
and it is also called a string literal.

• Multiline strings can be denoted using triple quotes.
s = '''This is

Multiline
string''‘

None
None is another special data type in Python. None is frequently used

to represent the absence of a value or no value.

Sequence Type:
A Sequence is an ordered collection of items, indexed by

positive integers.
It is a combination of mutable (a mutable variable is one,

whose value can be changed) and
immutable (an immutable variable is one, whose value can

not be changed) data types.
There are two types of sequence data type available in

Python, they are:

• list
• tuple

• List: Lists are used to store multiple items in a single
variable.

• List items are ordered, changeable, and allow duplicate
values.

• x = ["apple", "banana", "cherry"] list
• y = [‘apple’, ‘banana’, ‘cherry’] list

• Tuple: Tuples are used to store multiple items in a single
variable.

• A tuple is a collection which is ordered and unchangeable.
• Tuples are written with round brackets.
• Tuple items are ordered, unchangeable, and allow

duplicate values.
• x = ("apple", "banana", "cherry") tuple
• Y= (‘apple’, ‘banana’, ‘cherry’) tuple

Mapping Type: dictionary(dict)
• Dictionaries are used to store data values in key: value

pairs.
• A dictionary is a collection which is ordered*, changeable

and does not allow duplicates.
z = {"name" : "John", "age" : 36} dict

Set Types: set, frozenset
Set is an unordered collection of unique items.
Set is defined by values separated by comma inside braces
{ }. Items in a set are not ordered.
We can perform set operations like
union, intersection on two sets.
Sets have unique values.
They eliminate duplicates.

• Frozen set is just an immutable version of a Python set .
• While elements of a set can be modified at any time,

elements of the frozen set remain the same after
creation.

Type Conversion

The process of converting the value of one data type
(integer, string, float, etc.) to another data type is called
type conversion. Python has two types of type
conversion.
1. Implicit Type Conversion
2. Explicit Type Conversion

Implicit Type Conversion
• In Implicit type conversion, Python automatically

converts one data type to another data type. This
process doesn't need any user involvement.

• Let's see an example where Python promotes the
conversion of the lower data type (integer) to the higher
data type (float) to avoid data loss.

x=10
print(type(x))
y=12.6
print(type(y))
x=x+y
print(x)
print(type(x))

<class 'int'>
<class 'float'>
22.6
<class 'float'>
>

we can see the type of
‘x’ got automatically
changed to the “float”
type from the “integer”
type. this is a simple
case of Implicit type
conversion in python.

Now, let's try adding a string and an integer

x=10
print(type(x))
y="126“
print(type(y))
X=x+y

As we can see from the output, we got TypeError. Python is not
able to use Implicit Conversion in such conditions.

However, Python has a solution for these types of situations
which is known as Explicit Conversion.

Explicit Type Conversion

•In Explicit Type Conversion, users convert the data type of
an object to required data type.
•We use the predefined functions like int(), float(), str(), etc
to perform explicit type conversion.
•This type of conversion is also called typecasting because
the user casts (changes) the data type of the objects.

Syntax :
<required_datatype>(expression)

Typecasting can be done by assigning the required data type
function to the expression.

complex(): this is used to convert integer value to complex
number.

chr(): this is used to convert the integer value in to
corresponding ASCII value

• ord() : This function is used to convert a character to
integer. The ord() function returns an integer representing
Unicode code point for the given Unicode character.

• hex() : This function is to convert integer to hexadecimal
string.
Convert an integer number (of any size) to a lowercase
hexadecimal string prefixed with “0x” using hex()
function.

Example: divide by 16 quotient remainder
X=1128 1128/16 70 8

70/16 4 6
4/16 0 4

Hex(x) = 468

• oct() : This function is to convert integer to octal string.
Convert an integer number (of any size) to an octal string
prefixed with “0o” using oct()

Example:

Additional Operators of Python
1. Membership Operators:
Python’s membership operators test for membership in a
sequence, such as strings, lists, or tuples. There are two
membership operators .
 in: Evaluates to true if it finds a variable in the

specified sequence and false otherwise.
Example: x in y, here in results in a 1 if x is a member of

sequence y.
 not in: Evaluates to true if it does not finds a variable in

the specified sequence and false otherwise.
Example: x not in y, here not in results in a 1 if x is not a

member of sequence y.

2. Identity Operators
Identity operators compare the memory locations of two
objects. There are two Identity operators

 Is : Evaluates to true if the variables on either side of the
operator point to the same object and false otherwise.

Example: x is y, here is results in 1 if id(x) equals id(y).

 is not :Evaluates to false if the variables on either side of the
operator point to the same object and true otherwise.

Example: x is not y, here is not results in 1 if id(x) is not equal
to id(y).

Indentation
• Indentation refers to the spaces at the beginning of a code

line.
• In many programming languages the indentation in code is

only for readability , but this indentation in Python is very
important and also mandatory to write programs.

• Python uses indentation to indicate a block of code. In
Python, Programs get structured through indentation

Comments
• Comments are an important part of any program.
• A comment is a text that describes what the program or a

particular part of the program is trying to do and is ignored by
the Python interpreter.

• Comments are used to help you and other programmers
understand, maintain, and debug the program.

• Python uses two types of comments: single-line comment
and multiline comments.

Single Line Comment
• In Python, use the hash (#) symbol to start writing a

comment.
• Hash (#) symbol makes all text following it on the same line

into a comment.
• For example, #This is single line Python comment

Multiline Comments
• use triple quotes. These triple quotes are generally used

for multiline strings.
For example,

'''This is
multiline comment
in Python using triple quotes''‘

Reading Input
• In Python, input() function is used to gather data from

the user. The syntax for input function is,
variable_name = input([prompt])

prompt is a string written inside the parenthesis that is printed
on the screen. The prompt statement gives an indication to
the user that needs to enter the value through the keyboard.

Example:
name=input(“what is your name”)
course=input(“which course you study”)
mobile=input(“give your mobile number”)

raw_input() function

• Python raw_input function is used to get the values from the user.
We call this function to tell the program to stop and wait for the
user to input the values.

• It is a built-in function. The input function is used only in Python
2.x version.

• The Python 2.x has two functions to take the value from the user.
• The first one is input function and another one

is raw_input() function.
• The raw_input() function is similar to input() function in Python

3.x.
• Developers are recommended to use raw_input function in

Python 2.x. Because there is a vulnerability in input function in
Python 2.x version.

Printing Output
• The print() function allows a program to display text onto the

console.
Example:

name=input(“what is your name”)
course=input(“which course you study”)
mobile=input(“give your mobile number”)
print(name)
print(course)
print(mobile)

• There are different ways to print values in Python, there are
two major string formats which are used inside the print()
function to display the contents onto the console that are less
error prone and results in cleaner code. They are
1. str.format()
2. f-strings

1. str.format() Method
To insert the value of a variable or expression or an object
into another string and display it to the user as a single
String then we use this str.format() method. The format()
method returns a new string with inserted values. The
format() method works for all releases of Python 3.x.

The syntax for format() method is,
Print(“str”.format(variable))

Example: 1 country = input("Which country do you live in?")
print("I live in {0}".format(country))

Output
Which country do you live in? India
I live in India

The 0 inside the curly braces {0} is the index of the first (0th)
argument (here in this example, it is variable country)

Example 2: a = 10
b = 20

print("The values of a is {0} and b is {1}".format(a, b))
print("The values of b is {1} and a is {0}".format(a, b))

Output
The values of a is 10 and b is 20
The values of b is 20 and a is 10

Formatting Types
:< Left aligns the result (within the available space)

txt = "We have {:<6} students in CSM / CSD."
print(txt.format(210))

:> Right aligns the result (within the available space)
txt = "We have {:>6} students in CSM / CSD."
print(txt.format(210))

:^ Center aligns the result (within the available space)
txt = "We have {:^6} students in CSM / CSD."
print(txt.format(210))

2. f-strings: Formatted strings or f-strings were introduced in
Python 3.6. A f-string is a string literal that is prefixed with
“f”.

Example: country = input("Which country do you live in?")
print(f"I live in {country}")

Output
Which country do you live in? India
I live in India

Input string is assigned to variable country . Observe the
character f prefixed before the quotes and the variable
name is specified within the curly braces.

Python Mathematical Functions
1. factorial(x) : Returns factorial of x. where x ≥ 0
2. gcd(x, y): Returns the Greatest Common Divisor of x and y
3. remainder(x, y): Find remainder after dividing x by y.
4. pow(x, y): Return the x to the power y value.
5. sqrt(x): Finds the square root of x
6. ceil() :- returns the smallest integral value greater than the

number. If number is already integer, same number is returned.
7. floor() :- returns the greatest integral value smaller than the

number. If number is already integer, same number is returned.
8. exp(a) :- This function returns the value of e raised to the

power a (e**a)
To use these mathematical functions in python we must import

math library in the program
For complex numbers import cmath library in the program

9. min() : function returns the item with the lowest value
10. max: function returns the item with the highest value

Some functions do not need to import math library function

Python String Functions
1. capitalize()Converts the first character to upper case
2. casefold()Converts string into lower case

3. count()Returns the number of times a specified value occurs in a
string

4. find()Searches the string for a specified value and returns the
position of where it was found

5. upper(): converts the string in to upper case
6. swapcase()Swaps cases, lower case becomes upper case and vice

versa
7. title()Converts the first character of each word to upper case

PYTHON PROGRAMMING

B.Tech I Year II Sem

Dr Ayesha Banu

Assistant Professor

Department of CSE

Practice Programs

1. Write a Python program to find those numbers which are divisible by 7 and multiple of 5, between 1500
and 2700 (both included).

2. Write a Python program that accepts a string and calculate the number of digits and letters.

3. Find the sum of the series 2 +22 + 222 + 2222 + .. n terms

4. Program to Find the Sum of the Series: 1 + x^2/2 + x^3/3 + … x^n/n

5. Program to Find the Sum of the Series: 1 + 1/2 + 1/3 + ….. + 1/N

6. Write a program to check whether the last digit of a number(entered by user) is divisible by 3 or not.

7. Accept three sides of triangle and check whether the triangle is possible or not.

(triangle is possible only when sum of any two sides is greater than 3rd side)

8. Write the output of the following if a = 9

if (a > 5 and a <=10):

print("Hello")

else:

print("Bye")

9. Accept the age of 4 people and display the youngest one?

Unit – II

Understanding the Decision Control Structures: The if Statement, A

Word on Indentation, The if … else Statement, The if … elif … else

Statement.

Loop Control Statements: The while Loop, The for Loop, Infinite

Loops, Nested Loops. The break Statement, The continue Statement,

The pass Statement, The assert Statement, The return Statement.

• Python programs are generally executed sequentially from top to bottom, in the

order that they appear. Apart from sequential control flow statements you can

employ decision making and looping control flow statements to break up the flow

of execution thus enabling your program to conditionally execute particular blocks

of code.

Control Flow Statements

The control flow statements in Python Programming Language are

1. Sequential Control Flow Statements: This refers to the line by line execution, in

which the statements are executed sequentially, in the same order in which they

appear in the program.

2. Decision Control Flow Statements: Depending on whether a condition is True or

False, the decision structure may skip the execution of an entire block of statements

or even execute one block of statements instead of other (if, if…else and if…elif…else).

3. Loop Control Flow Statements: This is a control structure that allows the execution of

a block of statements multiple times until a loop termination condition is met (for loop

and while loop). Loop Control Flow Statements are also called Repetition statements or

Iteration statements.

Indentation

• Indentation refers to the spaces at the beginning of a code line.

• In many programming languages the indentation in code is only for readability , but
this indentation in Python is very important and also mandatory to write programs.

• Python uses indentation to indicate a block of code. In Python, Programs get
structured through indentation

The if Decision Control Flow Statement (Simple if)

The syntax for if statement is,

if Boolean_ Expression:

statement (s)

The if decision control flow statement starts with

if keyword and ends with a colon.

Colon should be present at the end

Indentation

Keyword

•The expression in an if statement should be a Boolean expression.

•The if statement decides whether to run some particular statement or not depending upon

the value of the Boolean expression.

•If the Boolean expression evaluates to True then statements in the if block will be

executed;

•otherwise the result is False then none of the statements are executed.

Example:

if 20 > 10:

… print("20 is greater than 10")

Output

20 is greater than 10

Example:

if 20 < 10:

… print("20 is less than 10")

Output

Example 2: write a if condition to check given number is even

num = int(input("enter the number?"))

if num%2 == 0:

print("Number is even")

Output:

enter the number? 10

Number is even

Output:

enter the number? 13

Example 3: write a if condition to check given number is positive

num = int(input("enter the number?"))

if num> 0:

print("Number is positive")

Output:

enter the number? 10

Number is positive

Output:

enter the number? -12

The if…else Decision Control Flow Statement

An if statement can also be followed by an else statement which is optional. An else

statement does not have any condition. Statements in the if block are executed if the

Boolean_Expression is True. Use the optional else block to execute statements if the

Boolean_Expression is False.

The if…else statement allows for a two-way decision.

The syntax for if…else statement is,

if Boolean_Expression:

statement_1

else:

statement_2

Example 1: Program to check whether a number is even or odd.

num = int(input("enter the number?"))

if num%2 == 0:

print("Number is even...")

else:

print("Number is odd...")

Output:

enter the number? 10

Number is even..

Output:

enter the number? 13

Number is odd..

Example 2: Program to check whether a person is eligible to vote or not.

age = int (input("Enter your age? "))

if age>=18:

print("You are eligible to vote !!");

else:

print("Sorry! you have to wait !!");

Output:

Enter your age? 90You are eligible to vote !!

Example 3: Program to check whether a number is positive or
negative.

num = int(input("enter the number?"))

if num< 0:

print("Number is positive...")

else:

print("Number is negative...")

Output:

enter the number?10

Number is positive

Output:

enter the number? -12

Number is negative

Example 4: Program to Find the Greater of Two Numbers

x = int(input("enter the first value?"))

Y = int(input("enter the second value?"))

if x>y:

print(“the greatest number is :“,x)

else:

print(“the greatest number is :“,y)

Output:

Enter the first number 8

Enter the second number 10

the greater number is 10

Output:

Enter the first number 12

Enter the second number 10

the greater number is 12

The if…elif…else Decision Control Statement

The if…elif…else is also called as multi-way decision control statement.

When we need to choose from several possible alternatives, then an elif statement is
used along with an if statement.

The keyword ‘elif’ is short for ‘else if’ and is useful to avoid excessive indentation.

The else statement must always come last, and will again act as the default action.

The syntax for if…elif…else statement is,

if Boolean_Expression_1:

statement_1

elif Boolean_Expression_2:

statement_2

elif Boolean_Expression_3:

statement_3

:

:

:

else:

statement_last

Example 1:Python program to find the largest among the three numbers

num1 = float(input("Enter first number: "))

num2 = float(input("Enter second number: "))

num3 = float(input("Enter third number: "))

if (num1 >= num2) and (num1 >= num3):

largest = num1

elif (num2 >= num1) and (num2 >= num3):

largest = num2

else:

largest = num3

print("The largest number is", largest)

OUTPUT

Enter first number: 47

Enter second number: 58

Enter third number: 21

The largest number is 58.0

Example:2 Write a Program to Prompt for a Score between 0.0 and 1.0. If the Score

Is Out of Range, Print an Error. If the Score Is between 0.0 and 1.0, Print a Grade

Using the Following Table

Score Grade

>= 0.9 A

>= 0.8 B

>= 0.7 C

>= 0.6 D

< 0.6 F

score = float(input("Enter your score"))

if score < 0 or score > 1:

print('Wrong Input')

elif score >= 0.9:

print('Your Grade is "A" ')

elif score >= 0.8:

print('Your Grade is "B" ')

elif score >= 0.7:

print('Your Grade is "C" ')

elif score >= 0.6:

print('Your Grade is "D" ')

else:

print('Your Grade is "F" ')

OUTPUT

Enter your score 0.92

Your Grade is "A"

Example 3: Write a python program to calculate the grades of a student ? Accept
name , rollno, 5 subject marks. Display the result

print("enter students name and htno")

name=input()

htno=int(input())

print("Enter Marks Obtained in 5 Subjects: ")

m1 = int(input())

m2 = int(input())

m3 = int(input())

m4 = int(input())

m5 = int(input())

tot = m1+m2+m3+m4+m5

avg = tot/5

print("**************************")

print("Name:=\t", name)

print("Hall tkt no:\t",htno)

print("total marks:\t",tot)
print("average marks:\t",avg)

if avg>=91 and avg<=100:
print("Your Grade is A1")

elif avg>=81 and avg<91:
print("Your Grade is A2")

elif avg>=71 and avg<81:
print("Your Grade is B1")

elif avg>=61 and avg<71:
print("Your Grade is B2")

elif avg>=51 and avg<61:
print("Your Grade is C1")

elif avg>=41 and avg<51:
print("Your Grade is C2")

elif avg>=33 and avg<41:
print("Your Grade is D")

elif avg>=21 and avg<33:
print("Your Grade is E1")

elif avg>=0 and avg<21:
print("Your Grade is E2")

else:
print("Invalid Input!")

print("***************")

• Write a program to calculate electricity bill using following details and print the bill

units = (prev_month_read) – (curr_month_read)

units 1 – 100 bill= units*1.5

units 101-200 bill=units* 2.5

units 201-300 bill= units* 4

units 300 – 350 bill= units *5

units > 350 fixed bill 1500

• Write a program to calculate Employees Salary and print the pay slip
Input: number of days worked

wages per day

calculate: basic pay=wages*days

HRA=basic*0.1 (10 % of basic pay)

DA=basic*0.05 (5% of basic pay)

PF=basic*0.12 (12 % of basic pay) netsalary=basic pay +HRA+DA-PF;

Nested if Statement

In some situations, you have to place an if statement inside another statement. An if

statement that contains another if statement either in its if block or else block is called a

Nested if statement.

The syntax of the nested if statement is,

if Boolean_Expression_1:

if Boolean_Expression_2:

statement_1

else:

statement_2

else:

statement_3

 Program to Check If a Given Year Is a Leap Year

year = int(input("enter any year"))

if (year % 4) == 0:

if (year % 100) == 0:

if (year % 400) == 0:

print(year,"is a leap year")

else:

print(year,"is not a leap year")

else:

print(year,"is a leap year")

else:

print(year,"is not a leap year")

OUTPUT

Enter any year 2014

2014 is not a Leap Year

Enter any year 2000

2000 is a Leap Year

Program to find greatest of 3 numbers using nested if

a=int(input("Enter A: "))
b=int(input("Enter B: "))
c=int(input("Enter C: "))
if a>b:

if a>c:
g=a

else:
g=c

else:
if b>c:

g=b
else:

g=c
print("Greater = ",g)

Output

Enter A: 10
Enter B: 20
Enter C: 30
Greater = 30

Python program to find roots of quadratic equation

import math

print("enter a, b, c values")

a=int(input())

b=int(input())

c=int(input())

dis = b * b - 4 * a * c

sqrt_val = math.sqrt(abs(dis))

checking condition for discriminant

if dis > 0:

print(" real and different roots ")

print((-b + sqrt_val)/(2 * a))

print((-b - sqrt_val)/(2 * a))

elif dis == 0:
print(" real and same roots")
print(-b / (2 * a))

when discriminant is less than 0
else:

print("Complex Roots")
print(- b / (2 * a), " + i", sqrt_val)
print(- b / (2 * a), " - i", sqrt_val)

Input :a = 1, b = 2, c = 1

Output : Roots are real and

same -1.0

Input :a = 2, b = 2, c = 1

Output : Roots are complex -

0.5 + i 2.0

-0.5 - i 2.0

Input :a = 1, b = 10, c = -24

Output : Roots are real and

different 2.0 -12.0

1. Program to Check if a character is Vowel or Consonant

2. program to enter week number and print day of week

3. Accept three sides of a triangle and check whether it is an equilateral, isosceles
or scalene triangle.

• An equilateral triangle is a triangle in which all three sides are equal.

• A scalene triangle is a triangle that has three unequal sides.

• An isosceles triangle is a triangle with (at least) two equal sides.

4. Write a program to accept two numbers and mathematical operators and perform
operation accordingly.

5. Accept three numbers from the user and display the second largest number.

6. Accept three sides of triangle and check whether the triangle is possible or not.

(triangle is possible only when sum of any two sides is greater than 3rd side)

Short Hand If

If you have only one statement to execute, you can put it on the same line as the if

statement.

Example

One line if statement:

if a > b: print("a is greater than b")

Short Hand If ... Else

If you have only one statement to execute, one for if, and one for else, you can put it all

on the same line:

Example

One line if else statement:

a = 2
b = 330
print("A") if a > b else print("B")

This technique is known as Ternary Operators, or Conditional Expressions.

We can also have multiple else statements on the same line:

Example

One line if else statement, with 3 conditions:

a = 330
b = 330
print("A") if a > b else print("=") if a == b else print("B")

a = 330

b = 330

if a > b:

print("A")

elif a == b:

print("=")

else:

print("B")

And

The and keyword is a logical operator, and is used to combine conditional

statements:

Example

Test if a is greater than b, AND if c is greater than a:

a = 200

b = 33

c = 500

if a > b and c > a:
print("Both conditions are True")

Or

The or keyword is a logical operator, and is used to combine conditional
statements:

Example

Test if a is greater than b, OR if a is greater than c:

a = 200
b = 33
c = 500
if a > b or a > c:

print("At least one of the conditions is True")

Python has two primitive loop commands:

1. while loops

2. for loops

Python Loops

The while Loop

The syntax for while loop is,

while Boolean_Expression:

statement(s)

The while loop starts with the while keyword and ends with a colon. With a while statement, the first

thing that happens is that the Boolean expression is evaluated before the statements in the while loop

block is executed.

If the Boolean expression evaluates to False, then the statements in the while loop

block are never executed.

If the Boolean expression evaluates to True, then the while loop block is executed.

After each iteration of the loop block, the Boolean expression is again checked, and if it is True, the

loop is iterated again. Each repetition of the loop block is called an iteration of the loop. This process

continues until the Boolean expression evaluates to False and at this point the while statement exits.

Program 1 : Display First 10 Numbers Using while Loop Starting from 0

i = 0

while i < 10:

print(i)

i = i + 1

Program 2 : Display First 10 Numbers Using while Loop in reverse order

i = 10

while i >= 0:

print(i)

i = i - 1

Program 3: Find sum and product of n natural numbers

n=int(input("enter n value"))

i = 1

sum=0

prod=1

while i<= n:

sum=sum+i

prod=prod*i

i = i + 1

print("the sum of",n,"natural numbers is",sum)

print("the prod of",n,"natural numbers is",prod)

??? Write a program to find factorial of a given number

??? Write a program to find sum of squares of first 10 natural numbers

OUTPUT

enter n value10

the sum of 10 natural numbers is 55

the prod of 10 natural numbers is 3628800

4. Program to accept any number and find sum of digits of the number

n=int(input("enter any number"))

sum=0

temp=n

while n>0:

rem=n%10

sum=sum+rem

n=n//10

print("the sum of digits of",temp,"is",sum)

OUTPUT

enter any number548

the sum of digits of 548 is 17

5. Write a to determine whether a given number is armstrong.

n=int(input("enter any number"))

sum=0

temp=n

while n>0:

rem=n%10

sum=sum+(rem*rem*rem)

n=n//10

if sum==temp:

print("the number is armstrong")

else:

print("the number is not armstrong")

OUTPUT

enter any number125

the number is not armstrong

enter any number153

the number is armstrong

6. Program to Check whether a given number is palindrome

n=int(input("enter any number"))

rev=0

temp=n

while n!=0:

rem=n%10

rev=rev*10+rem

n=n//10

print("the number entered is",temp)

print("the reverse of the number is",rev)

if temp==rev:

print("the number is palindrome")

else:

print("the number is not palindrome")

OUTPUT

enter any number151

the number entered is 151

the reverse of the number is 151

the number is palindrome

enter any number122

the number entered is 122

the reverse of the number is 221

the number is not palindrome

The for Loop

The syntax for the for loop is,

for iteration_variable in sequence:

statement(s)

The for loop starts with for keyword and ends with a colon. The first item in the

sequence gets assigned to the iteration variable iteration_variable. Here,

iteration_variable can be any valid variable name.

Then the statement block is executed. This process of assigning items from the
sequence to the iteration_variable and then executing the statement continues
until all the items in the sequence are completed.

A for loop is used for iterating over a sequence (that is either a list, a tuple, a dictionary,

a set, or a string).

Example

Print each fruit in a fruit list:

fruits = ["apple", "banana", "cherry"]
for x in fruits:
print(x)

The for loop does not require an indexing variable to set beforehand.

Looping Through a String

Even strings are iterable objects, they contain a sequence of characters:

Example

Loop through the letters in the word “apple":

for x in "apple":
print(x)

Program to find the sum and product of all numbers stored in a list

numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

sum = 0

prod = 1

for val in numbers:

sum = sum+val

prod = prod*val

print("The sum is", sum)

print("The product is", prod)

OUTPUT

The sum is 48

The product is 1267200

The range() function

We can generate a sequence of numbers using range() function

Example: range(10) will generate numbers from 0 to 9 (10 numbers).

Program to print WELCOME 10 times

for i in range(10): prints Welcome 10 times

print("Welcome")

for i in range(10): prints numbers 0 to 9

print(i)

The range() function defaults to 0 as a starting value,

however it is possible to specify the starting value by adding a
parameter:

range(2, 6), which means values from 2 to 6 (but not including 6):

Example:

for i in range(2,10): prints numbers 2 to 9 , 2 is the starting value

print(i)

The range() function defaults to increment the sequence by 1,

however it is possible to specify the increment value by adding a third
parameter:

range(2, 30, 3): prints numbers starting from 2 to 29 by incrementing 3
times.

Example:

for i in range(2,30,3): prints numbers 2 5 8 11 14 17 20 23 26 29

print(i)

The range() function generates a sequence of numbers which can be iterated through

using for loop. The syntax for range() function is,

range([start ,] stop [, step])

Both start and step arguments are optional and the range argument value should always be

an integer.

start → value indicates the beginning of the sequence. If the start argument is not

specified, then the sequence of numbers start from zero by default.

stop → Generates numbers up to this value but not including the number itself.

step → indicates the difference between every two consecutive numbers in the

sequence. The step value can be both negative and positive but not zero.

NOT E: The square brackets in the syntax indicate that these arguments are optional. You

can leave them out.

Program 1: program to find the factorial of a number

n=int(input("enter any number"))

fact=1

if n<0:

print("factorial does not exist for -ve numbers")

elif n==0:

print("factorial of 0 is equal to 1")

else:

for i in range(1,n+1):

fact=fact*i

print("factorial of",n,"is equal to",fact)

OUTPUT

enter any number-

8

factorial does not exist for -

ve numbers

enter any number0

factorial of 0 is equal to 1

enter any number5

factorial of 5 is equal to 120

Program 2: program to Fibonacci series for a given number

n=int(input("enter any number"))

first=0

second=1

print(first)

print(second)

for i in range(2,n):

total=first+second

print(total)

first=second

second=total

OUTPUT

enter any number10

0

1

1

2

3

5

8

13

21

34

Program 3: program to check if a number is prime or not

n=int(input("enter any number"))

nof=0

for i in range(1,n+1):

if n%i==0:

nof=nof+1

print("number of factors=",nof)

if nof==2:

print(n,"is a prime number")

else:

print(n,"is not a prime number")

OUTPUT

enter any number11

number of factors= 2

11 is a prime number

enter any number24

number of factors= 8

24 is not a prime number

Else in For Loop

The else keyword in a for loop specifies a block of code to be executed when the loop is

finished:

Example:

Print all numbers from 0 to 5, and print a message when the loop has ended:

for x in range(6):
print(x)

else:
print("Finally finished!")

Note: The else block will NOT be executed if the loop is stopped by a break statement.

Python Nested Loops

• A nested loop is a loop inside a loop.

• The "inner loop" will be executed one time for each iteration of the "outer loop":

• Python programming language allows to use one loop inside another loop.

for iterating_var in sequence: -------------Outer Loop

for iterating_var in sequence: -------------Inner Loop

statements(s)

statements(s)

while expression:

while expression:

statement(s)

statement(s)

Program to print patterns of stars

n=int(input("enter n value"))

for i in range(0,n):

for j in range(0,i+1):

print("*",end=" ")

print()

n=int(input("enter n value"))

for i in range(n+1,0,-1):

for j in range(0,i-1):

print("*",end=" ")

print()

n=int(input("enter n value"))

for i in range(1,n+1):

for j in range(1,i+1):

print(i,end=" ")

print()

n=int(input("enter n value"))

for i in range(1,n+1):

for j in range(1,i+1):

print(j,end=" ")

print()

https://www.javatpoint.com/how-to-print-pattern-in-python

Program to print prime numbers between 2 to 20 using nested while loop

i = 2

while(i < 20):

j = 2

while(j <= (i/j)):

if not(i%j):

break

j = j + 1

if (j > i/j) :

print(i, " is prime")

i = i + 1

OUTPUT

2

3

5

7

11

13

17

19

Program to print multiplication table using nested while loop

i=1

while i<=5:

j=1

while j<=5:

print(i*j,end=" ")

j+=1

i+=1

print("\n")

Python Infinite Loop

• An Infinite Loop in Python is a continuous repetitive conditional loop that gets
executed until an external factor interferes in the execution flow, or we terminate
the program.

• A loop becomes infinite loop if a condition never becomes FALSE.

i=0 we do not give the increment statement and the loop enters

while(i<=10): in to an infinite loop

print("hai")

i=0 we do not give the termination condition and the loop enters

while True : in to an infinite loop

print("Hello")

i=i+1

Transfer Statements of Python:

Transfer statements are also called as Loop Control Statements that change execution of
loop from its normal sequence. There are 3 transfer statements supported by python

1. break

2. continue

3. Pass

Python break statement

• The break statement terminates the loop containing it. Control of the program flows to
the statement immediately after the body of the loop.

• If the break statement is inside a nested loop (loop inside another loop),
the break statement will terminate the innermost loop.

Example:

for val in "vaagdevi":

if val == "d":

break

print(val)

print("The end")

In this program, we iterate through the ”vaagdevi" sequence.

We check if the letter is d, upon which we break from the

loop. Hence, we see in our output that all the letters up

till g gets printed. After that, the loop terminates.

Python continue statement

The continue statement is used to skip the rest of the code inside a loop for the current
iteration only. Loop does not terminate but continues on with the next iteration.

for val in "vaagdevi":

if val == "d":

continue

print(val)

print("The end")

Python pass statement

In Python programming, the pass statement is like a null statement. The difference between
a comment and a pass statement in Python is that while the interpreter ignores a comment
entirely, pass is not ignored.

Why to use pass statement:

For example we want to declare a loop or function in our code but we want to implement
that function in future, which means we are not yet ready to write the body of the function.
In this case we cannot leave the body of function empty as this would raise error because it
is syntactically incorrect, in such cases we can use pass statement which does
nothing but makes the code syntactically correct.

Example:

alphabets = {'p', 'a', 's', 's'}

For i in alphabets:

pass

Example:

Num = [20, 11, 9, 66, 4, 89, 44]

for i in Num:

if num%2 == 0:

pass

else:

print(Num)

11

9

89

https://www.programiz.com/python-programming/statement-indentation-comments

Unit 2: Assignment (Submission Date May 19)

1. Explain the different decision control or conditional control statements with syntax,

flowchart and example ?

2. Explain what are while loop and for loop in python with syntax and example ?

3. What is nested loop and infinite loop in python ? Explain ?

4. Explain the different transfer statements of python with suitable example ?

Unit 2: Programs Assignment(Sub Date May 25)

1. write a program to find the largest among the three numbers

2. write a program to find roots of quadratic equation

3. Write a program to accept two numbers and mathematical operator and perform
operation accordingly.

4. Program to accept any number and find sum of digits of the number

5. Write a program to determine whether a given number is armstrong or not.

6. Write a Program to Check whether a given number is palindrome

7. Write a program to print Fibonacci series for a given number

8. Write a program to check if a number is prime or not

9. Write a program to print pyramid of numbers

10. Write a program using break , continue and pass statements

https://forms.office.com/r/XytA0UfNju

PYTHON PROGRAMMING

B.Tech I Year II Sem

Dr Ayesha Banu

Assistant Professor

Department of CSE

UNIT - III

Functions- Function Definition and Execution, Scoping, Arguments:

Arguments are Objects, Argument Calling by Keywords, Default

Arguments, Function Rules, Return Values.

Advanced Function Calling: The apply Statement, The map Statement,

Indirect Function Calls.

• Functions are one of the fundamental building blocks in Python programming
language.

• Functions are used when we have a block of statements that needs to be executed
multiple times within the program.

• Rather than writing the block of statements repeatedly to perform the action, we
can use a function to perform that action.

• This block of statements are grouped together and is given a name which can be
used to invoke it from other parts of the program.

• Functions also reduce the size of the program by eliminating elementary code.

• Functions help to break a larger program into smaller parts and make it more easy.

• it avoids repetition and makes the code reusable.

• Functions can be either Built-in Functions or User-defined functions.

Built-In Functions

The Python interpreter has a number of functions that are built into it and are always available. The
list of the built-in functions are

Example:

User Defined Functions

Functions that readily come with Python are called built-in functions. Functions that we

define ourselves to do certain specific task are referred as user-defined functions.

Advantages of user-defined functions

• User-defined functions help to decompose a large program into small segments which
makes program easy to understand, maintain and debug.

• If repeated code occurs in a program. Function can be used to include those codes and
execute when needed by calling that function.

• In this concept the user only has to define the function and call the function for executing
the code inside it.

Function Definition

The syntax for function definition is,

def function_name (parameter_1, parameter_2, …, parameter_n):

statement(s)

In Python, a function definition consists of the def keyword, followed by

The name of the function. The function’s name has to adhere to the same naming rules

as variables: use letters, numbers, or an underscore, but the name cannot start with a

number. Also, you cannot use a keyword as a function name.

A list of parameters to the function are enclosed in parentheses and separated by

commas. Some functions do not have any parameters at all while others may have one

or more parameters.

A colon is required at the end of the function header. The first line of the function

definition which includes the name of the function is called the function header.

Block of statements that define the body of the function start at the next line of the

function header and they must have the same indentation level.

The def keyword introduces a function definition. The term parameter or formal

parameter is often used to refer to the variables as found in the function definition.

Function Call

Defining a function does not execute it. Defining a function simply names the function

and specifies what to do when the function is called. Calling the function actually

performs the specified actions with the indicated parameters.

The syntax for function call or calling function is,

function_name(argument_1, argument_2,…,argument_n)

• Arguments are the actual value that is passed into the calling function.

• When a function is called, the formal parameters are temporarily “bound” to the arguments

and their initial values are assigned through the calling function.

• When we call a function, the control flows from the calling function to the function

definition.

• Once the block of statements in the function definition is executed, then the control flows
back to the calling function and proceeds with the next statement.

• Python interpreter keeps track of the flow of control between different statements in the
program.

Note: When the control returns to the calling function from the function definition then the
formal parameters and other variables in the function definition no longer contain any
values.

Creating a Function

In Python a function is defined using the def keyword:

Example

def welcome():
print(“Welcome to Python Class")

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def welcome():
print(“Welcome to Python Class")

welcome()

Function Parameters or Arguments

The terms parameter and argument can be used for the same thing: information that are
passed into a function.

From a function's perspective:

• A parameter is the variable listed inside the parentheses in the function definition.

• An argument is the value that are sent to the function when it is called.

Types of formal arguments

We can call a function by using the following types of formal arguments −

Default arguments

Required arguments

Keyword arguments

Variable-length arguments

Default Arguments

• In some situations, it might be useful to set a default value to the arguments or parameters of

the function definition.

• Each default parameter has a default value as part of its function definition.

• We assign a default value to an argument using the assignment operator in python(=).

• When we call a function without a value for an argument, its default value is used.

• Usually, the default parameters are defined at the end of the parameter list, after any required

parameters.

• non-default parameters cannot follow default parameters. The default value is evaluated only

once.

• In above example age is the default argument with default value 25. when we first call the
student function we pass the values for both name and age. Hence they are printed as it is.

• When we call the student function for the second time, we pass only the value for name
and in this case the default value for age is considered and printed.

• When the non-default parameters follow the default parameters in function definition this will
give an error.

• In above example name is the non default argument but it follows the default argument age in
the student function definition.

• This gives an error when the program is executed

Required arguments

• These are the arguments passed to a function in correct positional order.

• These arguments are also called as positional arguments.

• Here, the number of arguments in the function call should match exactly with the
function definition.

• When no: of arguments do not match it shows error as follows

Keyword Arguments

• When we call a function with some values, these values get assigned to the arguments
according to their position.

Example:

• In above example first value get assigned to argument name.

• Similarly second value is assigned to argument course and third value to argument college.

• This assigning of values is done as per the position or order of the arguments.

• Python allows functions to be called using keyword arguments.

• When we call functions in this way, the order (position) of the arguments can be changed.

• In above example the program show no error syntactically but the meaning of values have
changed because the order of values in function call have mismatched.

• Here we can use key word arguments and give values in any order but still get the correct
output.

Variable-length arguments

• These arguments are also called as Arbitrary Arguments.

• Python allows us to have the arbitrary or variable number of arguments.

• This is especially useful when we are not sure in the advance that how many arguments,

the function would require.

• We define the arbitrary arguments while defining a function using the asterisk (*) sign.

• An asterisk (*) is placed before the variable name that holds the values of all non keyword

variable arguments.

• This tuple remains empty if no additional arguments are specified during the function call.

• In above example we don’t know how many fruit names will be printed or passed while
calling the function. In such a case we use the variable length arguments.

• In above program the function takes 2 arguments and prints the minimum value among
the two.

• But when we want to pass multiple values and print the minimum among them we can
use the variable length arguments.

• A function definition can have both formal arguments and also variable length arguments. This
tuple remains empty if no additional arguments are specified during the function call.

• In above example the first function call does not pass any variable length arguments, hence
the tuple remains empty and only the formal argument value 10 is printed.

• The second function call passes more number of arguments and here both formal and variable
length argument values 70 60 50 all are printed.

Variable-length keyword arguments

• Python can accept variable length keyword arguments also better known as **kwargs.

• It behaves similarly to *args, but stores the arguments in a dictionary instead of tuples:

Python return statement

• A return statement is used to end the execution of the function call and return the result
of the computation done to the calling function.

• The return statement is mostly the last statement in the function body.

• The statements after the return statement are not executed.

• If the return statement is without any expression, then the special value None is returned.

• In simple words the return keyword is used to exit a function and return a value.

The syntax for return statement is,

def fun():

statements . .

return [expression]

• The return statement terminates the execution of the function definition in which it appears
and returns control to the calling function. It can also return an optional value to its calling
function.

When the return statement has no expression then it returns None value

The statements after the return statement are not executed.

• A function can return only a single value, but that value can be a list or tuple.

• In some cases, we may return multiple values if they are related to each other.

• In such case, return the multiple values separated by a comma which by default is
constructed as a tuple by Python.

• In Python, it is possible to define functions without a return statement. Functions like this

are called void functions, and they return None.

Scope and Lifetime of Variables

• variables are the containers for storing data values.

• The location where we can find a variable and also access it if required is called the scope
of a variable.

• Local Scope: A variable created inside a function is called local variable and belongs to
the local scope of that function, and can only be used inside that function.

• In above example x is a local variable and its scope is confined to the function definition
only.

• When we try to access this variable outside the function(in the last line), we get an error
because variable x is out of its local scope.

• Global Scope: Variables that are defined outside the function body are called global
variables and they have global scope.

• global variables can be accessed throughout the program body by all functions.

• Here x is a global variable which is declared outside the function body.

• X can be accessed inside the function (y=x+100) and also outside the function (y=x+200).

• The scope of variable x is global.

• The lifetime of a variable refers to the amount of time or duration of the variable’s

existence i.e how long does the variable exists with its assigned value to be accessed.

• The local variable is created and destroyed every time the function is executed and its life

time exist as long as the function is executing.

• It is possible to access global variables from inside a function, as long as you have not

defined a local variable with the same name.

• A local variable can have the same name as a global variable, but they are totally different

so changing the value of the local variable has no effect on the global variable.

• The local variable has meaning only inside the function in which it is defined.

Python program for swapping two numbers using functions

python program using functions to find LCM of two numbers

program to perform the arithmetic operations using the functions to each
operation (Record Program)

Write a program to define functions to calculate the area of a circle, reactangle and square using
default arguments (Record Program)

Write a program to define a function to display the grade of a student

by using positional arguments (rno, sub1, sub2, sub3) Rec Program

Python Nested Functions

• A function defined inside the body of another function is called a nested function.

• There are both outer function and inner function

Recursive Functions in Python

• In Python, a function can call other functions.

• It is even possible for the function to call itself.

• These types of construct are termed as recursive functions.

recursive function to find the factorial of an integer.

Program to find reverse a number using Recursion (Rec Prog)

program to convert a decimal number to

binary number using recursive function.(Rec Prog)

Program to find sum of digits of a number using Recursion

Indirect Function Call

When we define any functions in python we can call the function for execution in two ways

Direct function call

Indirect function call

Example:1

def add(a,b):

c=a+b

print("a+b value=",c)

add(10,20)

Output:

a+b value= 30

This way of calling the function is direct function call

Example:1

def add(a,b):

c=a+b

print("a+b value=",c)

add(10,20)

z=add

z(15,25)

Output:

a+b value= 30

a+b value= 40

Here declaring a variable z and assigning the name of the function will support in calling
the same function indirectly as z(15,25)

we can also use the following notation for indirect function calling

def add(a,b):

c=a+b

print("a+b value=",c)

z=add

def indirect(func,arg1,arg2):

print(func(arg1,arg2))

indirect(z,20,30)

Output:

a+b value= 50

1. Write a Python function to find the Max of three numbers.

2. Write a Python function to check whether a number is in a given range.

3. Write a Python function that takes a number as a parameter and check the
number is prime or not

Unit - IV

• Lists: List, Creating List, Updating the Elements of a List, Sorting the List
Elements. Storing Different Types of Data in a List, Nested Lists, Nested Lists as
Matrices.

• Tuples: Creating Tuple, Accessing the Tuple Elements, Basic Operations on
Tuples, Functions to Process Tuples, Inserting Elements in a Tuple, Modifying
Elements of a Tuple, Deleting Elements from a Tuple.

• Sets: Creating Set, Basic Operations on Sets, Methods of Set.

• Dictionaries: Operations on Dictionaries, Dictionary Methods, Using for Loop
with Dictionaries, Sorting the Elements of a Dictionary using Lambdas,
Converting Lists into Dictionary.

SETS

• A set is a collection which is both unordered and unindexed.

• A set is an unordered collection with no duplicate items.

• Primary uses of sets include membership testing and eliminating
duplicate entries.

• Sets also support mathematical operations, such as union,
intersection, difference, and symmetric difference.

• Curly braces { } or the set() function can be used to create sets with a
comma-separated list of items inside curly brackets { }.

• Note: to create an empty set you have to use set() and not { } as the
latter creates an empty dictionary.

Creating a set:

• A set is created by using the set() function or placing all the elements within a
pair of curly braces.

Ex-1:

thisset = set(["apple","banana","cherry"])

print(thisset)

Ex-2:

thisset = {"apple", "banana", "cherry"}

print(thisset)

Output: {'banana', 'apple', 'cherry'}

Note: the set list is unordered, meaning: the items will appear in a random order.

Sets are unordered, so you cannot be sure in which order the items will appear.

Set Items:

Set items are unordered, unchangeable, and do not allow duplicate values.

Unordered:

Unordered means that the items in a set do not have a defined order.

Set items can appear in a different order every time you use them, and cannot be

referred to by index or key.

Unchangeable:

Sets are unchangeable, meaning that we cannot change the items after the set has been

created.

Once a set is created, you cannot change its items, but you can add new items.

Duplicates Not Allowed:

Sets cannot have two items with the same value.

Example

Duplicate values will be ignored:

thisset = {"apple", "banana", "cherry", "apple"}

print(thisset)

Output:

{'apple', 'cherry', 'banana'}

len():To determine how many items a set has, use the len() method.

Example:

Get the number of items in a set:

thisset = {"apple", "banana", "cherry"}

print(len(thisset))

Set Items - Data Types:

Set items can be of any data type:

Example

set1 = {"apple", "banana", "cherry"}

set2 = {1, 5, 7, 9, 3}

set3 = {True, False, False}

A set can contain different data types:

Example

set1 = {"abc", 34, True, 40, "male"}

Access Items:

You cannot access items in a set by referring to an index or a key.

But you can loop through the set items using a for loop, or ask if a specified value is
present in a set, by using the in keyword.

Example

Loop through the set, and print the values:

thisset = {"apple", "banana", "cherry"}
for x in thisset:
print(x)

Output:

apple
banana
cherry

• Check if "banana" is present in the set:

• thisset = {"apple", "banana", "cherry"}
print("banana" in thisset)

output: True

• Add Items

• Once a set is created, you cannot change its items, but you can add
new items.

• To add one item to a set use the add() method.

• Example

thisset = {"apple", "banana", "cherry"}
thisset.add("orange")
print(thisset)

Output:

{'banana', 'cherry', 'apple', 'orange'}

Add Sets:

• To add items from another set into the current set, use
the update() method.

• Example

• Add elements from set2 into set1:

• set1 = {"apple", "banana", "cherry"}
set2 = {"pineapple", "mango", "papaya"}
set1.update(set2)
print(set1)
output:

{'apple', 'mango', 'cherry', 'pineapple', 'banana', 'papaya'}

Add Any Iterable:

• The object in the update() method does not have to be a set, it can be
any iterable object (tuples, lists, dictionaries etc.).

• Example

• Add elements of a list to at set:

• thisset = {"apple", "banana", "cherry"}
mylist = ["kiwi", "orange"]
thisset.update(mylist)
print(thisset)

Output:

{'banana', 'cherry', 'apple', 'orange', 'kiwi'}

Remove Item:

• To remove an item in a set, use the remove(), or the discard() method.

• Example

• Remove "banana" by using the remove() method:

• thisset = {"apple", "banana", "cherry"}
thisset.remove("banana")
print(thisset)

• Note: If the item to remove does not exist, remove() will raise an error.

• Remove "banana" by using the discard() method:

• thisset = {"apple", "banana", "cherry"}
thisset.discard("banana")
print(thisset)

Note: If the item to remove does not exist, discard() will NOT raise an error.

• Remove the last item by using the pop() method:

thisset = {"apple", "banana", "cherry"}
x = thisset.pop()
print(x)
print(thisset)

Output: apple
{'banana', 'cherry'}

Note: Sets are unordered, so when using the pop() method, you do not know which item

that gets removed.

• The clear() method empties the set:

thisset = {"apple", "banana", "cherry"}
thisset.clear()
print(thisset)

Output: thisset()

The del keyword will delete the set completely:

thisset = {"apple", "banana", "cherry"}
del thisset
print(thisset)

output:

Traceback (most recent call last):
File "demo_set_del.py", line 5, in <module>

print(thisset) #this will raise an error because the set no longer
exists
NameError: name 'thisset' is not defined

Loop Items:

You can loop through the set items by using a for loop:

Example:

Loop through the set, and print the values:

thisset = {"apple", "banana", "cherry"}

for x in thisset:
print(x)

Output:

banana
apple
cherry

Join Two Sets:

• There are several ways to join two or more sets in Python.

• You can use the union() method that returns a new set containing all
items from both sets

• Example

• The union() method returns a new set with all items from both sets:

• set1 = {"a", "b" , "c"}
set2 = {1, 2, 3}
set3 = set1.union(set2)
print(set3)

Output: {'c', 'b', 3, 1, 2, 'a'}

x = {"a", "b", "c"}
y = {"f", "d", "a"}
z = {"c", "d", "e"}

result = x.union(y, z)

print(result)

Python Set intersection() Method

Return a set that contains the items that exist in both set x, and set y:

x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
z = x.intersection(y)
print(z)

The intersection() method returns a set that contains the similarity between two or
more sets.

x = {"a", "b", "c"}
y = {"c", "d", "e"}
z = {"f", "g", "c“}
result = x.intersection(y, z)
print(result)

Keep All, But NOT the Duplicates:

• The symmetric_difference_update() method will keep only the
elements that are NOT present in both sets.

Example: Keep the items that are not present in both sets:

x = {"apple", "banana", "cherry"}
y = {"google", "microsoft", "apple"}
x.symmetric_difference_update(y)
print(x)

Output:

{'google', 'banana', 'microsoft', 'cherry'}

PYTHON PROGRAMMING

B.Tech I Year II Sem

Dr Ayesha Banu

Assistant Professor

Department of CSE

Data Types

Data types specify the type of data like numbers and characters to be stored and
manipulated within a program.

Numeric Types: int, float, complex

Boolean Type: bool

Text Type: str

Special data type: None

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

• Python offers a range of compound /collection data types often referred to as sequences
(list, tuple, range, Set, Dictionary)

• List isone of the most frequently used and very versatile data types used in Python.

• List is a collection which is ordered and changeable (mutable) and also allows duplicate
values.

• Tuple is a collection which is ordered and unchangeable (Un mutable) and also allows
duplicate values.

• Set is a collection which is unordered and un indexed and do not allow duplicate values.

• Dictionary is a collection which is ordered and changeable with no duplicate values.

• When choosing a compound data type, it is important to understand the properties of that
data type.

• These compound data types are also called as built in data structures of python

What is a Data Structure?

• Organizing, managing and storing data is important as it enables easier access and efficient
modifications.

• Data Structures allows to organize the data in such a way that it enables us to store
collections of data, relate them and perform operations on them accordingly.

Types of Data Structures in Python

1. LIST

• Most of the times a variable can hold only single value.

• However, in many cases, we may need to assign more than one value.

• List is the most frequently used data structure to store multiple items in a single variable.

• Lists are used to store data of different data types in a sequential manner.

• There are addresses assigned to every element of the list, which is called as Index.

• The index value starts from 0 and goes on until the last element called the positive index.

• There is also negative indexing which starts from -1 enabling you to access elements from
the last to first.

• List items are ordered, changeable, and allow duplicate values.

• List items are indexed, the first item has index [0], the second item has index [1] etc.

• When we say that lists are ordered, it means that the items have a defined order, and that
order will not change.

• If you add new items to a list, the new items will be placed at the end of the list.

• The list is changeable, meaning that we can change, add, and remove items in a list after it
has been created.

• To change the value of a specific item, refer to the index number:

Example

a = ["apple", "banana", "cherry"]

print(a)

a[1] = "mango"

print(a)

Output

['apple', 'banana', 'cherry']

['apple', 'mango', 'cherry']

• List Allow Duplicates that means lists can have items with the same value:

Example:

a = ["apple", "banana", "cherry", "apple", "cherry"]

print(a)

Output:

['apple', 'banana', 'cherry', 'apple', 'cherry']

• Therefore a list is ordered, changeable and also allow duplicate values.

2. Creating a list

• To create a list, we use the square brackets and add elements into the list separated by
commas.

• If we do not pass any elements inside the square brackets, we get an empty list as the
output.

list1 = [] #create empty list

print(list1)

list2 = [1, 2, 3, 'example', 3.132] #creating list with data

print(list2)

Output:

[]

[1, 2, 3, ‘example’, 3.132]

List Items - Data Types:

List items can be of any data type:

Example:

list1 = ["apple", "banana", "cherry"] # all strings

list2 = [1, 5, 7, 9, 3] # all numeric

list3 = [True, False, False] # all boolean

print(list1)

print(list2)

print(list3)

Output:

['apple', 'banana', 'cherry']

[1, 5, 7, 9, 3]

[True, False, False]

A list can contain different data types:

list1 = ["abc", 34, True, 40, "male"]

print(list1)

Output

['abc', 34, True, 40, 'male']

List Length

To determine how many items a list has, use the len() function:

Example:

list1 = ["abc", 34, True, 40, "male"]

print(len(list1))

Adding Items to List

Add Items at end of the list

• To add an item to the end of the list, use the append() method:

Example
a= ["apple", "banana", "cherry“]
print(a)
a.append("orange")
print(a)

Output
['apple', 'banana', 'cherry']
['apple', 'banana', 'cherry', 'orange']

Add an item at the specified index

• To add an element at a specified index we use the insert() method:

Example

a= ["apple", "banana", "cherry"]

print(a)

a.insert(1,"orange")

print(a)

Output

['apple', 'banana', 'cherry']

['apple', 'orange', 'banana', 'cherry']

Deleting Items from List

There are several methods to remove items from a list:

Remove any specified item

The remove() method can be used to remove any specified item:

Example

a= ["apple", "banana", "cherry"]

print(a)
a.remove("banana")
print(a)

Output

['apple', 'banana', 'cherry']

['apple', 'cherry']

Remove item from specified index

The pop() method is used to removes item from specified index.

if index is not specified the last item will be removed from the list.

Example

a= ["apple", "banana", "cherry", "grapes", "mango"]

print(a)

a.pop(1) #removes item at index 1

print(a)

a.pop() #removes the last item

print(a)

Output

['apple', 'banana', 'cherry', 'grapes', 'mango']

['apple', 'cherry', 'grapes', 'mango']

['apple', 'cherry', 'grapes']

The del keyword can also be used to remove item from the specified index.

If the index is not specified then the entire list is removed completely

Example

a= ["apple", "banana", "cherry", "grapes", "mango"]

print(a)

del a[2] #removes item at index 2

print(a)

del a #removes the entire list

print(a)

Output

['apple', 'banana', 'cherry', 'grapes', 'mango']

['apple', 'banana', 'grapes', 'mango']

NameError: name 'a' is not defined

del keyword can also be used to delete range of items

Example

a= ["apple", "banana", "cherry", "grapes", "mango", "pine apple", "orange"]

print(a)

del a[2:5] #removes item from index 2 to 4

print(a)

Output

['apple', 'banana', 'cherry', 'grapes', 'mango', 'pine apple', 'orange']

['apple', 'banana', 'pine apple', 'orange']

The clear() method empties the list:
Example: a = ["apple", "banana", "cherry"]

print(a)
a.clear()
print(a)

Output ['apple', 'banana', 'cherry']
[]

Accessing Items of a List

We can Access the items of a list by referring to the index number:

Example

Print the second item of the list:

a = ["apple", "banana", "cherry"]
print(a[1])

Output

banana

Negative Indexing

Negative indexing means beginning from the end, -1 refers to the last item, -2 refers to the
second last item etc.

Example

Print the last item of the list:

a= ["apple", "banana", "cherry"]
print(a[-1])

Access a range of items

• We can also access an range of items from a list by using a range of indexes by specifying
where to start and where to end the acess.

• When specifying a range, the return value will be a new list with the specified items.

Example

Return the third, fourth, and fifth item:

a= ["apple", "banana", "cherry", "orange", "kiwi", "melon", "mango"]
print(a[2:5])

Output

['cherry', 'orange', 'kiwi']

Note: The search will start at index 2 but index 5 is not included in the range.

Changing item values in the List

Change single Item Value

To change the value of a specific item we refer to the index number:

Example

a = ["apple", "banana", "cherry"]

print(a)

a[1] = "mango"

print(a)

Output

['apple', 'banana', 'cherry']

['apple', 'mango', 'cherry']

Change a Range of Item Values:

• To change the value of items within a specific range,

• define a list with the new values, and

• refer to the range of index numbers where we want to insert the new values:

Example:

Change the values "banana" and "cherry" with the values “carrot" and

“tomato":

a = ["apple","banana","cherry","orange","kiwi","mango"]

a[1:3] = ["carrot","tomato"]

print(a)

Output:

['apple', 'carrot', 'tomato', 'orange', 'kiwi', 'mango']

If we try to give more values than the specified range then , the new items will be inserted in
the specified range, and the remaining items will move forward accordingly:

Example:

a = ["apple","banana","cherry","orange","kiwi","mango"]

a[1:2] = ["pineapple","grapes","papaya"]

print(a)

Output:

['apple', 'pineapple', 'grapes', 'papaya', 'cherry', 'orange', 'kiwi', 'mango']

If we try to give less values than the specified range then the given value is inserted
throughout the range and the remaining items will move accordingly:

Example:

a = ["apple","banana","cherry","banana","grapes","papaya"]

a[1:3] = ["watermelon"]

print(a)

a[1:4] = ["watermelon","pineapple"]

print(a)

Output:

['apple', 'watermelon', 'banana', 'grapes', 'papaya']

['apple', 'watermelon', 'pineapple', 'grapes', 'papaya']

extend() method

This method append elements of one list at the end of the other .

Example

vaag1 = ["CSE","CSM","CSD"]

vaag2 = ["EEE","ECE","MECH","CIVIL"]

vaag1.extend(vaag2)

print(vaag1)

Output:

['CSE', 'CSM', 'CSD', 'EEE', 'ECE', 'MECH', 'CIVIL']

Note: The elements will be added to the end of the list1.

The extend() method not only appends lists but it can append any iterable object like
(tuples, sets, dictionaries etc.)

Example

vaag1 = ["CSE","CSM","CSD"]

vaag2 = ("EEE","ECE","MECH","CIVIL")

print(type(vaag1))

print(type(vaag2))

vaag1.extend(vaag2)

print(vaag1)

Output:

<class 'list'>

<class 'tuple'>

['CSE', 'CSM', 'CSD', 'EEE', 'ECE', 'MECH', 'CIVIL']

copy() method: This method returns an exact true copy of the list.

A list can be copied using the = operator.

For example,

oldlist=[1,4,7,8,10]

print(oldlist)

newlist=oldlist

print(newlist)

Output:

[1, 4, 7, 8, 10]

[1, 4, 7, 8, 10]

• The problem with copying lists in this way is that if we modify newlist then oldlist is also
modified.

• This is because the newlist is referencing or pointing to the same oldlist object.

https://www.programiz.com/python-programming/list

• However, when we need the oldlist unchanged when the newlist is modified, we can use
the copy() method.

• The syntax of the copy() method is:

newlist = oldlist.copy()

• The copy() method doesn't take any parameters.

• The copy() method returns a new list. It doesn't modify the original list.

count(): This method returns the number of times the specified element appears in the list.

• The syntax of the count() method is:

list.count(element)

index() method: This method returns the index of the specified element in the list.

• The syntax of the list index() method is:

list.index(element, start, end)

• element - the element to be searched

• start (optional) - start searching from this index

• end (optional) - search the element up to this index

• The index() method returns the index of the given element in the list.

• If the element is not found, a ValueError exception is raised.

• Note: The index() method only returns the first occurrence of the matching element.

index() With Start and End Parameters

reverse() method: This method reverses the elements of the list.

• The syntax of the reverse() method is:

list.reverse()

Example

vaag=["CSE","CSM","CSD","EEE","ECE"]

print(vaag)

vaag.reverse()

print(vaag)

Output

['CSE', 'CSM', 'CSD', 'EEE', 'ECE']

['ECE', 'EEE', 'CSD', 'CSM', 'CSE']

sort() method: method sorts the elements of a given list in a specific ascending or
descending order.

• The syntax of the sort() method is:

list.sort(reverse=...)

• when we do not use the reverse parameter then the list is sorted in ascending order.

• If we use the parameter as reverse=True then the list is sorted in descending order.

Customize Sort Function

• We can also customize our own function by using the keyword argument key = function.

• The function will return a number that will be used to sort the list (the lowest number first)

Example: Sort the list based on how close the number is to 50:

def myfunc(n):
return abs(n - 50)

list = [100, 50, 65, 82, 23]
list.sort(key = myfunc)
print(list)

Output

[50, 65, 23, 82, 100]

• By default the sort() method is case sensitive, resulting in all capital letters being sorted
before lower case letters:

Example

list = ["banana", "Orange", "Kiwi", "cherry"]
list.sort()
print(list)

Output:

['Kiwi', 'Orange', 'banana', 'cherry']

• We can customize the sort and print lower case first

Loop through a list :Python - Loop Lists

We can loop or iterate through the list items by using a for loop:

Example: Print all items in the list, one by one:

list = ["apple", "banana", "cherry"]

for x in list:

print(x)

Loop Through the Index Numbers:

We can also loop through the list items by referring to their index number. Here we use
the range() and len() functions.

Example: Print all items by referring to their index number:

list = ["apple", "banana", "cherry"]
for i in range(len(list)):

print(list[i])

Using a While Loop

• we can loop through the list items by using a while loop.

• We can use the len() function to determine the length of the list, then start at 0 and loop
through the list items by referring to their indexes. increase the index by 1 after each
iteration.

Example:

Looping Using List Comprehension

List Comprehension offers the shortest syntax for looping through lists. This is also called as
the short hand for loop that will print all items in a list.

Join Two Lists

• There are several ways to join, or concatenate, two or more lists in Python.

• One of the easiest way is by using the + operator.

Example:

• Another way to join two lists is by appending all the items from list2 into list1, one by one
using loops.

• we can also use the extend() method to add elements from one list to another
list:

Nested Lists

• A list inside another list is called a nested list.

• Each list inside another list is separated by a comma. Each list inside the nested list can be
accessed using the index value.

We can access the items of the sub list by using matrix index form.

The indexes for the items in a nested list are illustrated as below:

Negative List Indexing In a Nested List:

We can access a nested list by negative indexing also. Negative indexes count backward from
the end of the list. So, L[-1] refers to the last item, L[-2] is the second-last, and so on.

Change Nested List Item Value: we can change same like in list.

Add items to a Nested list:

To add new values to the end of the nested list we can use append() method same like in list

https://www.learnbyexample.org/python-list-append-method/

We can also insert an item at a specific position in a nested list, use insert() method.

we can merge one list into another by using extend() method.

https://www.learnbyexample.org/python-list-insert-method/
https://www.learnbyexample.org/python-list-extend-method/

Remove items from a Nested List:

If we know the index of the item to be removed, we can delete the item using pop() method.

If no index value is given then the last element is removed or popped from the sub list

https://www.learnbyexample.org/python-list-pop-method/

We can also use the del statement to remove the value from the nested list. In this case the
removed element value cannot be printed.

If the second index is not specified in del statement then the entire sub list is removed
completely and If no index is specified then the entire nested list is removed completely

When we are not sure about the index position of the item but we know the name of
the item to be removed then we use remove() method to delete it by value.

Find Nested List Length:

https://www.learnbyexample.org/python-list-remove-method/

Iterate through a Nested List:

To iterate over the items of a nested list, use simple for loop.

https://www.learnbyexample.org/python-for-loop/

Nested List as a Matrix

• In Python, we can implement a matrix as a nested list (list inside a list). We can treat each
element as a row of the matrix.

• For example X = [[1, 2], [4, 5], [3, 6]] would represent a 3x2 matrix. First row can be
selected as X[0] and the element in first row, first column can be selected as X[0][0].

• The elements of the matrix can be accessed using the index values

We can also take the matrix element values from user as input

Here number of rows and columns of the matrix are fixed as 2x2 matrix

We can also accept the no of rows and no of columns from user along with matrix element
values.

Program to transpose a matrix using a nested list

A = []

print("enter no of rows and no of columns")

r=int(input())

c=int(input())

print("Enter rxc Elements for Matrix A: ")

for i in range(r):

A.append([])

for j in range(c):

num = int(input())

A[i].append(num)

print("\nMatrix A is:")
for i in range(r):

for j in range(c):
print(A[i][j], end=" ")

print()

print("\ntranspose of Matrix A is:")
for i in range(c):

for j in range(r):
print(A[j][i], end=" ")

print()

A = []
B = []
C = []
print("enter no of rows and no of columns of
matrix A")
r1=int(input())
c1=int(input())
print("Enter rxc Elements for Matrix A: ")
for i in range(r1):

A.append([])
for j in range(c1):

num = int(input())
A[i].append(num)

print("\nMatrix A is:")
for i in range(r1):

for j in range(c1):
print(A[i][j], end=" “)

print()

print("enter no of rows and no of columns of
matrix B")
r2=int(input())
c2=int(input())
print("Enter rxc Elements for Matrix A: ")
for i in range(r2):

B.append([])
for j in range(c2):

num = int(input())
B[i].append(num)

print("\nMatrix B is:")
for i in range(r2):

for j in range(c2):
print(B[i][j], end=" ")

print()
if ((r1!=r2) or (c1!=c2)):

print("the matrices are not compatable for
addition")

Python Program to Add Two Matrices

for i in range(r2):

C.append([])

for j in range(c2):

C[i].append(A[i][j]+B[i][j])

print("matrix addition A+B =")

for i in range(r2):

for j in range(c2):

print(C[i][j], end=" ")

print()

A = []
T = []

print("enter no of rows and no of columns of matrix A")
r1=int(input())
c1=int(input())
print("Enter rxc Elements for Matrix A: ")
for i in range(r1):

A.append([])
for j in range(c1):

num = int(input())
A[i].append(num)

print("\nMatrix A is:")
for i in range(r1):

for j in range(c1):
print(A[i][j], end=" ")

print()

Transpose of a Matrix

for i in range(c1):
T.append([])
for j in range(r1):

T[i].append(A[j][i])

print("transpose matrix =")
for i in range(c1):

for j in range(r1):
print(T[i][j], end=" ")

print()

Program to add two matrices

3x3 matrix

X = [[12,7,3],[4 ,5,6],[7 ,8,9]]

3x3 matrix

Y = [[5,8,1],[6,7,3],[4,5,9]]

result is 3x3

result = [[0,0,0],[0,0,0],[0,0,0]]

print("Matrix X ")

for i in range(3):

for j in range(3):

print(X[i][j], end=" ")

print()

Matrix addition

print("Matrix Y ")
for i in range(3):

for j in range(3):
print(Y[i][j], end=" ")

print()
iterate through rows of X
for i in range(3):

iterate through columns of Y
for j in range(3):

result[i][j] = X[i][j] + Y[i][j]

print("addition Matrix ")
for i in range(3):

for j in range(3):
print(result[i][j], end=" ")

print()

Program to multiply two matrices

3x3 matrix
X = [[12,7,3],[4 ,5,6],[7 ,8,9]]
3x4 matrix
Y = [[5,8,1,2],[6,7,3,0],[4,5,9,1]]
result is 3x4
result = [[0,0,0,0],[0,0,0,0],[0,0,0,0]]
print("Matrix X ")
for i in range(3):

for j in range(3):
print(X[i][j], end=" ")

print()
print("Matrix Y ")
for i in range(3):

for j in range(4):
print(Y[i][j], end=" ")

print()

Matrix multiplication

iterate through rows of X
for i in range(len(X)):

iterate through columns of Y
for j in range(len(Y[0])):

iterate through rows of Y
for k in range(len(Y)):

result[i][j] += X[i][k] * Y[k][j]

print("Product Matrix ")
for i in range(3):

for j in range(4):
print(result[i][j], end=" ")

print()

Write a program to perform bubble sort on a list without using the sort(). (Record Program)

def bubbleSort(list):

loop to access each array element

for i in range(len(list)):

loop to compare array elements

for j in range(len(list) - i - 1):

compare two adjacent elements

if list[j] > list[j + 1]:

swapping elements

temp = list[j]

list[j] = list[j+1]

list[j+1] = temp
data = [2, 45, 0, 11, 9]
bubbleSort(data)
print('Sorted Array in Ascending Order:')
print(data)

Write a program to display the elements of a list in reverse order without using the reverse()

(Record Program)

list = [1, 2, 3, 4, 5]

print("the list in original order is")

for i in range(len(list)):

print(list[i])

print("the list in reverse order is")

for i in range(len(list)-1, -1, -1):

print(list[i])

program to create a list and eliminate the duplicate
values from the list

list = [1, 3, 5, 6, 3, 5, 6, 1]

print ("The original list is : " ,list)

res = []

for i in list:

if i not in res:

res.append(i)

print ("The list after removing duplicates : ", res)

Unit - IV

• Lists: List, Creating List, Updating the Elements of a List, Sorting the List
Elements. Storing Different Types of Data in a List, Nested Lists, Nested Lists as
Matrices.

• Tuples: Creating Tuple, Accessing the Tuple Elements, Basic Operations on
Tuples, Functions to Process Tuples, Inserting Elements in a Tuple, Modifying
Elements of a Tuple, Deleting Elements from a Tuple.

• Sets: Creating Set, Basic Operations on Sets, Methods of Set.

• Dictionaries: Operations on Dictionaries, Dictionary Methods, Using for Loop
with Dictionaries, Sorting the Elements of a Dictionary using Lambdas,
Converting Lists into Dictionary.

Dictionary

• A dictionary is a collection of an ordered, mutable set of key: value pairs, with the
requirement that the keys are unique within a dictionary.

• As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier,
dictionaries are unordered.

• No duplicate values are allowed.

• In the real world, the Contacts list in our phone.

• It is practically impossible to memorize the mobile number of everyone.

• In the Contacts list, we store the name of the person as well as his number.

• This allows to identify the mobile number based on a person’s name.

• We can think of a person’s name as the key that retrieves his mobile number,
which is the value associated with the key.

Creating Dictionary

• Dictionaries are constructed using curly braces { }, wherein you include a list of
key:value pairs separated by commas.

• Also, there is a colon (:) separating each of these key and value pairs, where the
words to the left of the colon operator are the keys and the words to the right of
the colon operator are the values.

• Unlike lists, which are indexed by a range of numbers, dictionaries are indexed by
keys.

• Here a key along with its associated value is called a key:value pair.

• Dictionary keys are case sensitive.

Example:

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

print(dict1)

Output

{'R': 'Red', 'Y': 'Yellow', 'G': 'Green'}

• Each of the keys and values here is of string type.

• A value in the dictionary can be of any data type including string, number, list, or
dictionary itself.

Accessing Items of Dictionary

• We can access the items of a dictionary by referring to its key name, inside square
brackets:

Example: Output
dict1 = {

"R": "Red", Red
"Y": "Yellow",
"G": "Green"
}

x=dict1["R"]
print(x)

There is also a method called get() that will give you the same result:

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

x = dict1.get("R")

print(x)

Get Keys

• The keys() method will return a list of all the keys in the dictionary.

x = dict1.keys()

print(x)

Add a new item to the dictionary

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

print(dict1)

dict1["P"]="Pink"

print(dict1)

output

Get Values

• The values() method will return a list of all the values in the dictionary.

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

x=dict1.values()

print(x)

Output

Get Items

• The items() method will return each item in a dictionary, as tuples in a list.

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

print(dict1)

x=dict1.items()

print(x)

Check if Key Exists

• To determine if a specified key is present in a dictionary use the in keyword:

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

if "R" in dict1:

print("This is the key of the dictionary")

output

This is the key of the dictionary

Python - Change Dictionary Items

Change Values

• We can change the value of a specific item by referring to its key name:

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

print(dict1)

dict1["R"]="Rocking"

print(dict1)

Output

Update Dictionary

• The update() method will update the dictionary with the items from the given argument.

• The argument must be a dictionary, or an iterable object with key:value pairs.

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

print(dict1)

dict1.update({"G":"Golden"})

print(dict1)

Python - Remove Dictionary Items

There are several methods to remove items from a dictionary:

• The pop() method removes the item with the specified key name:

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

print(dict1)

dict1.pop("R")

print(dict1)

Output

• The popitem() method removes a random item(before 3.7 version) and last (after 3.7) .

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

print(dict1)

dict1.popitem()

print(dict1)

• The del keyword removes the item with the specified key name same like pop. (only syntax is
different)

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

print(dict1)

del dict1["G"]

print(dict1)

• The del keyword can also delete the dictionary completely:

del dict1

• The clear() method empties the dictionary:

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

print(dict1)

dict1.clear()

print(dict1)

Output

Dictionary Methods

The copy() method returns a copy of the specified dictionary.

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

x=dict1.copy()

print(x)

Output

• The fromkeys() method returns a dictionary with the specified keys and the
specified value.

x = ('key1', 'key2', 'key3')

y = 0

thisdict = dict.fromkeys(x, y)

print(thisdict)

output

['key1': 0, 'key2': 0, 'key3': 0]

• The setdefault() method returns the value of the item with the specified key.

• If the key does not exist, insert the key, with the specified value.

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

x=dict1.setdefault("G", "Golden")

print(x)

output

Green

dict1 = {

"R": "Red",

"Y": "Yellow"

}

x=dict1.setdefault("G","Golden")

print(x)

Output

Golden

• Since this key is not there in the dictionary, it is inserted and the value is displayed

Using for Loop with Dictionaries

• We can loop through a dictionary by using a for loop.

• When looping through a dictionary, the return value are the keys of the dictionary

• There are methods that can be used to return the values also.

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

for x in dict1:

print(x)

Output

• We can also Print all values in the dictionary, one by one:

dict1 = {

"R": "Red",

"Y": "Yellow",

"G": "Green"

}

for x in dict1:

print(dict1[x])

Output

• We can also use the values() method to return values of a dictionary:
dict1 = {

"R": "Red",
"Y": "Yellow",
"G": "Green"

}
for x in dict1.values():

print(x)

• We can use the keys() method to return the keys of a dictionary:
dict1 = {

"R": "Red",
"Y": "Yellow",
"G": "Green"

}
for x in dict1.keys():

print(x)

• We can Loop through both keys and values, by using the items() method:

dict1 = {
"R": "Red",
"Y": "Yellow",
"G": "Green"

}
for x,y in dict1.items():

print(x,y)

Output

Converting Lists into Dictionary

• We can convert a Python list to a dictionary using three methods

1. dictionary comprehension

2. dict.fromkeys()

3. zip() method.

• All methods create a new dictionary. They do not modify the existing list.

Method - 1 Using Dictionary Comprehension

student = ["Raju", "Ravi", "Rama", "Roopa"]

student_dict = { course : "CSM" for course in student }

print(student_dict)

Output

• In the above example, we have created a student list with 4 names that is to be converted into
the dictionary.

• Using the dictionary comprehension, the list is converted in to a dictionary in a single line.

• The list elements are turned into keys and “CSM” becomes the value.

list1 = [1, 2, 3, 4, 5]

square_dict = {n: n*n for n in list1}

print(square_dict)

Output

{1: 1, 2: 4, 3: 9, 4: 16, 5: 25}

Method - 2 Using dict.fromkeys()

student = ["Raju", "Ravi", "Rama", "Roopa"]

student_dict = dict.fromkeys(student,"CSM")

print(student_dict)

Output

• We can create dictionary from a list using the dict.fromkeys() method.

• This method accepts a list of keys that we want to convert into a dictionary.

• The value specified is assigned to every key.

Note: In above two methods we can assign same value to all the keys. If we want to assign
different values to different keys we must use method 3: zip() method

Method - 3 Using zip()

student = ["Raju", "Ravi", "Rama", "Roopa"]

course=["CSM","CSD","CSM","CSE"]

student_dict = dict(zip(student, course))

print(student_dict)

Output

• First, we specify two lists: a list of students, and a list of their courses.

• Then, we use the zip() function to merge the two lists together.

• The zip() function returns a list of merged tuples.

• Because we want a dictionary, we use dict() to convert the tuples into a dictionary.

Python Lambda

• A lambda function is a small anonymous function in python that can take any number of
arguments, but can only have one expression.

Syntax

lambda arguments : expression

• The expression is executed and the result is returned:

Example 1:Add 10 to argument a, and return the result:

x = lambda a : a + 10
print(x(5))

Example 2: Multiply argument a with argument b and return the result:

x = lambda a, b : a * b
print(x(5, 6))

Example 3: find sum of argument a, b, and c and return the result:

x = lambda a, b, c : a + b + c
print(x(5, 6, 2))

Sorting the Elements of a Dictionary using Lambdas

dict1 = [{ "name" : "Amar", "age" : 19},

{ "name" : "Rama", "age" : 20 },

{ "name" : "Prithvi" , "age" : 20 }]

print("the dict1 printed before soring")

print(dict1)

print("\r")

print("The dict1 printed sorting by age: ")

print(sorted(dict1, key = lambda i: i['age']))

print("\r")

print("The dict1 printed sorting by age and name: ")

print(sorted(dict1, key = lambda i: (i['age'], i['name'])))

print ("\r")

print("The dict1 printed sorting by age in descending order: ")

print(sorted(dict1, key = lambda i: i['age'],reverse=True))

Unit - V

Files:

Working with Files and Directories

 File Processing

 Controlling File I/O.

• Files are named locations on disk to store related information.

• They are used to permanently store data in a non-volatile memory (e.g. hard disk).

• Since Random Access Memory (RAM) is volatile (which loses its data when the computer is
turned off), we use files for future use of the data by permanently storing them.

• Python has several functions for creating, reading, updating, and deleting files.

• Hence, in Python, a file operation takes place in the following order:

Open a file

Read or write (perform operation)

Close the file

FILES

Opening Files in Python

• Python has a built-in open() function to open a file.

• The open() function takes two parameters; filename, and mode.

• There are four different methods (modes) for opening a file:

"r" - Read - Default value. Opens a file for reading, error if the file does not exist

"a" - Append - Opens a file for appending, creates the file if it does not exist

"w" - Write - Opens a file for writing, creates the file if it does not exist

"x" - Create - Creates the specified file, returns an error if the file exists

• In addition we can specify if the file should be handled as binary or text mode

"t" - Text - Default value. Text mode

"b" - Binary - Binary mode

• To open a file for reading it is enough to specify the name of the file:

f = open("demofile.txt")

• The code above is the same as:

f = open("demofile.txt", "rt")

• Because "r" for read, and "t" for text are the default values, you do not need to specify them.

• Make sure the file exists, or else you will get an error.

• Assume we have the file demofile.txt, located in the same folder as Python:

demofile.txt

Hello! Students of CSM & CSD.
Good Luck!

• To open the file, use the built-in open() function.

• The open() function returns a file object, which has a read() method for reading the content
of the file:

f = open("demofile.txt", "r")
print(f.read())

• If the file is located in a different location, you will have to specify the file path, like this:

f = open("D:\\myfiles\demofile.txt", "r")
print(f.read())

• By default the read() method returns the whole text, but you can also specify how many
characters you want to return:

f = open("demofile.txt", "r")
print(f.read(5))

• You can return one line by using the readline() method:

f = open("demofile.txt", "r")
print(f.readline())

• By calling readline() two times, you can read the two first lines:

f = open("demofile.txt", "r")
print(f.readline())
print(f.readline())

• By looping through the lines of the file, you can read the whole file, line by line:

f = open("demofile.txt", "r")
for x in f:
print(x)

• It is a good practice to always close the file when you are done with it.

f = open("demofile.txt", "r")
print(f.readline()) print(f.readlines())
f.close()

Write to an Existing File

• To write to an existing file, you must add a parameter to the open() function:

• "a" - Append - will append to the end of the file

• "w" - Write - will overwrite any existing content

Example

Open the file "demofile2.txt" and append content to the file:

f = open("demofile2.txt", "a")
f.write("Now the file has more content!")
f.close()

#open and read the file after the appending:

f = open("demofile2.txt", "r")
print(f.read())

• Open the file "demofile2.txt" and overwrite the content:

f = open("demofile2.txt", "w")
f.write("Woops! I have deleted the content!")
f.close()

#open and read the file after the appending:
f = open("demofile2.txt", "r")
print(f.read())

• the "w" method will overwrite the entire file.

Create a New File

• To create a new file in Python, use the open() method, with one of the following
parameters:

• "x" - Create - will create a file, returns an error if the file exist

• "a" - Append - will create a file if the specified file does not exist

• "w" - Write - will create a file if the specified file does not exist

Example

• Create a file called "myfile.txt":

f = open("myfile.txt", "x")

• Result: a new empty file is created!

Delete a File

• To delete a file, you must import the OS module, and run its os.remove() function:

Example

• Remove the file "demofile.txt":

import os
os.remove("demofile.txt")

Delete Folder

• To delete an entire folder, use the os.rmdir() method:

Example

• Remove the folder "myfolder":

import os
os.rmdir("myfolder")

Note: You can only remove empty folders.

Changing position in files

Seek() method: seek() function is used to change the position of the File Handle to a given
specific position. File handle is like a cursor, which defines from where the data has to be
read or written in the file.

Syntax: f.seek(offset, from_what), where f is file pointer

Parameters:
Offset: Number of positions to move forward
from_what: It defines point of reference.

Returns: Does not return any value
• The reference point is selected by the from_what argument. It accepts three values:
0: sets the reference point at the beginning of the file
1: sets the reference point at the current file position
2: sets the reference point at the end of the file
By default from_what argument is set to 0.

Example:

f=open(“demofile.txt","r")

f.seek(10)

print(f.tell())

print(f.readline())

f.close()

The tell() method returns the current file position in a file stream.

• All files are contained within various directories, and Python has the os module with several
methods that help us to create, remove, and change directories.

The mkdir() Method

• We can use the mkdir() method of the os module to create directories in the current
directory. we need to supply an argument to this method which contains the name of the
directory to be created.

Syntax

os.mkdir("newdir")

Example

import os

os.mkdir("test") # Create a directory "test"

Directories in Python

The getcwd() Method

• The getcwd() method displays the current working directory.

Syntax

os.getcwd()

Example

import os

print(os.getcwd())

Print List Directories and Files

import os

print(os.listdir())

Renaming a Directory or a File

• The rename() method can rename a directory or a file.

• For renaming any directory or file, the rename() method takes in two basic arguments:

• the old name as the first argument and the new name as the second argument.

First execute

import os

os.mkdir(“newdir”)

print(os.listdir())

Next Execute

import os

os.rename(“newdir”, “renamedir”)

print(os.listdir())

The rmdir() Method

• The rmdir() method deletes the directory, which is passed as an argument in the method.

• Before removing a directory, all the contents in it should be removed.

Syntax

os.rmdir('dirname')

Example

import os

os.rmdir(“renamedir”)

print(os.listdir())

Controlling File I/O

• Once we open any file we may require to control the way how the file is accessed and
shared.

• To use the file control we need to first find the file descriptor number from the file object.

• We can use the fileno() method to do this.

f=open("demofile.txt","wb")

print("name of file:=",f.name)

fid=f.fileno()

print("file descriptor:=",fid)

f.close()

fcntl() method: after finding the file descriptor, next the fcntl module sets or gets the
configuration information for the file. The basic format for this method is

fcntl(fd , command , [, args]) fd : file descriptor

command: constant argument specifying what to send to the file
control

args: optional

Command Description

1. F_DUPFD This command Duplicates the file descriptor

2. F_SETFD This command sets the close-on-exce flag. If this id set as TRUE then file
descriptor is closed and if set as False then file descriptor is kept open.

3. F_GETFD Returns the current value of the close-on-exce flag.

4. F_SETFL sets the file status flag.

5. F_GETFL gets the current file status flag value

ioctl() method: this method is similar to fcntl() except that it provides an interface to the ioctl
subsystem for controlling I/O.

File Locking: when working with files we perform reading and writing operations. When write
operation is performed it is necessary to take care that no other process is writing to the same
file. That is two processes must not write to one file at same time.

In this case the best way to handle is file locking. There are two functions for locking a file

1. flock() : this is a whole file locking method.

2. lockf () : allow us to lock some specific portions of files.

flock() function is defined as

flock(fd, op) fd: file descriptor

op: lock operation

Operation description

LOCK_EX Exclusive lock. Other processes cannot even obtain a shared lock on the file.

LOCK_NB Don’t block the locking process.

LOCK_SH Get a shared lock. This allows only your process to read and write to the file.

other processes can only read.

LOCK_UN Remove the lock or unlock.

lockf() function is defined as:

lockf(fd, operation[, length[, start[, whence]]])

fd and op are the same as before. Len, start and whence arguments define the length and
duration of the lock.

MODULES

• A python module can be defined as a python program file which contains a python

code including python functions, class, or variables. In other words, we can say that

our python code file saved with the extension (.py) is treated as the module. We may

have a runnable code inside the python module.

• Modules in Python provides us the flexibility to organize the code in a logical way.

• To use the functionality of one module into another, we must have to import the

specific module.

UNIT 5- MODULES

Create a Module:

To create a module just save the code you want in a file with the file extension .py:

Example

Save this code in a file named file.py

def display(name):
print("Hello, " + name)

Use a Module:

Now we can use the module we just created, by using the import statement:

Example

Import the module named file, and call the display function:

import file
file.display("sai") #modulename.functionname()

Loading the module in our python code:

We need to load the module in our python code to use its functionality. Python provides

two types of statements as defined below.

1. The import statement

2. The from-import statement

1. The import statement:

The import statement is used to import all the functionality of one module into another.

Here, we must notice that we can use the functionality of any python source file by

importing that file as the module into another python source file.

We can import multiple modules with a single import statement, but a module is loaded

once regardless of the number of times, it has been imported into our file.

The Syntax to use the import statement is:

import module1,module2,........ module n

Hence, if we need to call the function display() defined in the file file.py, we have

to import that file as a module into our module as shown in the example below.

Example: mainfile.py

import file

name = input("Enter the name:")

file.display(name)

Output:

Enter the name: Sai

Hi sai

file.py

def display(name)

print("Hi "+name)

Note: first run file.py then run mainfile.py

Execution:

Step1: Open a command prompt and create a new file that is file.py

Step2: Write some code in file.py.

#display prints a message to the name being passed.

Step3: Next run that program.

Step4: Create a new file that is mainfile.py.

Step5: Write some code and import file.py in mainfile.py.

Step6: run the mainfile.py program it give result that is HELLO SUMANYA.

The from-import statement:

Instead of importing the whole module into the namespace, python provides

the flexibility to import only the specific attributes of a module. This can be

done by using from? import statement. The syntax to use the from-import

statement is given below.

from < module-name> import <name 1>, <name 2>..,<name n>

Consider the following module named as calculation which contains three

functions as summation, multiplication, and divide.

calculation.py:

#place the code in the calculation.py

def summation(a,b):

return a+b

def multiplication(a,b):

return a*b;

def divide(a,b):

return a/b;

Maincalc.py:

from calculation import summation

#it will import only the summation() from calculation.py

a = int(input("Enter the first number"))

b = int(input("Enter the second number"))

print("Sum = ",summation(a, b))

#we do not need to specify the module name while accessing summatio

Output:

Enter the first number10

Enter the second number20

Sum = 30

The from...import statement is always better to use if we know the attributes

to be imported from the module in advance. It doesn't let our code to be

heavier. We can also import all the attributes from a module by using *.

Consider the following syntax.

from <module> import *

Variables in Module

The module can contain functions, as already described, but also variables of all types

(arrays, dictionaries, objects etc):

Example:

Save this code in the file mymodule.py

person1 = {
"name": "John",
"age": 36,
"country": "Norway"

}

Import the module named mymodule, and access the person1 dictionary:

import mymodule
a = mymodule.person1["age"]
print(a)

Renaming a module:

Python provides us the flexibility to import some module with a specific

name so that we can use this name to use that module in our python

source file.

The syntax to rename a module is given below.

import <module-name> as <specific-name>

Example:

import calculation as cal;

Example:

#the module calculation of previous example is imported in this example as cal.

import calculation as cal

a = int(input("Enter a?"))

b = int(input("Enter b?"))

print("Sum = ",cal.summation(a,b))

Output:

Enter a?10

Enter b?20

Sum = 30

Built-in Modules:

There are several built-in modules in Python, which you can import whenever

you like.

Example:

Import and use the platform module:

import platform
x = platform.system()
print(x)

Output: Windows

Using dir() function:

The dir() function returns a sorted list of names defined in the passed module.

This list contains all the sub-modules, variables and functions defined in this

module.

Example:

There is a built-in function to list all the function names (or variable names) in a

module. List all the defined names belonging to the platform module:

import platform
x = dir(platform)
print(x)

The reload() function:

As we have already stated that, a module is loaded once regardless of the

number of times it is imported into the python source file. However, if you

want to reload the already imported module to re-execute the top-level code,

python provides us the reload() function.

The syntax is:

reload(<module-name>)

for example, to reload the module calculation defined in the previous example,

we must use the following line of code.

reload(calculation)

PYTHON PROGRAMMING

B.Tech I Year II Sem

Dr Ayesha Banu
Assistant Professor

Department of CSE

UNIT – 5

Exceptions

There are (at least) two distinguishable kinds of errors:

syntax errors and exceptions.

• Syntax errors, also known as parsing errors, are the most common
kind of errors . As the name suggests this error is caused by the
wrong syntax in the code. It leads to the termination of the
program.

• Even if a statement or expression is syntactically correct, it may
cause an error when an attempt is made to execute it. These Errors
detected during execution are called exceptions .

• Exceptions are raised when the program is syntactically correct,
but the code resulted in an error. This error does not stop the
execution of the program, however, it changes the normal flow of
the program.

syntax error

exception

• The last line of the error message indicates what happened.

• Exceptions come in different types, and the type is printed as part
of the message:

• the types in the example
are ZeroDivisionError, NameError and TypeError.

• The string printed as the exception type is the name of the built-in
exception that occurred.

• This is true for all built-in exceptions, but need not be true for user-
defined exceptions

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html

Built-in Exceptions

 exception Exception: All built-in, non-system-exiting exceptions are
derived from this class. All user-defined exceptions should also be
derived from this class.

 exception ArithmeticError: This is base class for those built-in
exceptions that are raised for various arithmetic
errors: OverflowError, ZeroDivisionError.

• OverflowError :Raised when the result of an arithmetic operation
is too large to be represented.

• ZeroDivisionError :Raised when the second argument of a division
or modulo operation is zero.

• IndentationError: Raised when there is incorrect indentation.

https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html
https://docs.python.org/3/library/exceptions.html

 exception BufferError :Raised when a buffer related operation
cannot be performed.

 exception LookupError :The base class for the exceptions that
are raised when a key or index used on a mapping or
sequence is invalid: IndexError, KeyError.

EXCEPTION HANDLING

• When an error or exception occurs, Python will normally stop and
generate an error message.

• It is possible to write programs that handle selected exceptions
using try .. except .. else clauses

• The try block lets us test a block of code for errors.

• The except block lets us handle the error.

Example: 1

• in above example we print the value of x. But x is not defined and
hence it raises an error when the program is executed.

• This can be handled using the try .. except clause

• The statement which causes error is written after the try clause

• When the try block raises an error, the except block will be
executed.

• Therefore we can include the exception message to be displayed
after the except clause.

• Example 2:

x=int(input("enter x value"))

y=int(input("enter y value"))

z=x/y

print(z)

Output:

enter x value10

enter y value2

5.0

enter x value5

enter y value0

Traceback (most recent call last):

File "main.py", line 3, in <module>

z=x/y

ZeroDivisionError: division by zero

x=int(input("enter x value"))
y=int(input("enter y value"))
try:

z=x/y
print(z)

except:
print("this is an exception chk denominator value")

Output
enter x value10
enter y value2
5.0

enter x value3
enter y value0
this is an exception chk denominator value

The try statement works as follows.

• First, the try clause is executed.

• If no exception occurs, the except clause is skipped and execution
of the try statement is finished.

• If an exception occurs during execution of the try clause, the rest of
the clause is skipped.

 A single try statement can have multiple except statements.

 This is useful when the try block contains statements that may
throw different types of exceptions.

 At most one except clause statement only will be executed.

https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html

Python try with else clause

x=int(input("enter x value"))
y=int(input("enter y value"))
try:

z=x/y
print(z)

except:
print(" chk the remainder value")

else:
print("the division is success")

Output
enter x value12
enter y value4
3.0
the division is sucess

enter x value2
enter y value0
chk the remainder value

Multiple except clauses for one try clause

• We can define as many exception blocks as we want for one single
try clause, when we want to execute a special block of code for a
special kind of error:

Example:

x=int(input("enter x value"))

y=int(input("enter y value"))

try:

z=x/y

print(z)

except NameError:

print("chk if all variables are defined")

except ZeroDivisionError:

print(" chk the remainder value")

else:

print("the division is success")

try:
a = int(input("Please enter the numerator: "))
b = int(input("Please enter the denominator: "))
print(a / b)

except ZeroDivisionError:
print("Please enter a valid denominator.")

except ValueError:
print("Both values have to be integers.")

Output1:
Please enter the numerator: 10
Please enter the denominator: 2
5.0

Output2:
Please enter the numerator: 10
Please enter the denominator: 0
Please enter a valid denominator.
Output3:
Please enter the numerator: a
Both values have to be integers.

When both the inputs are correct

When denominator value is zero

When any one of the inputs is not an integer

Multiple Exceptions, One Except Clause

• We can also choose to handle different types of exceptions with
the same except clause.

• An except clause may name multiple exceptions as a
parenthesized tuple.

try:

a = int(input("Please enter the numerator: "))

b = int(input("Please enter the denominator: "))

print(a / b)

except (ZeroDivisionError, ValueError):

print("Please enter valid integers.")

Python try...finally

• The finally clause is the last clause in this sequence.

• It is optional, but if you include it, it has to be the last clause in
the sequence.

• The finally clause is always executed, even if an exception was
raised in the try clause.

• If a finally clause is present, the finally clause will execute as the last
task before the try statement completes.

• The finally clause runs whether or not the try statement produces
an exception.

• The finally clause is usually used to perform "clean-up" actions that
should always be completed.

• For example, if we are working with a file in the try clause, we will
always need to close the file, even if an exception was raised when
we were working with the data.

https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html
https://docs.python.org/3/reference/compound_stmts.html

try:
a = int(input("Please enter the numerator: "))
b = int(input("Please enter the denominator: "))
result = a / b

except (ZeroDivisionError, ValueError):
print("Please enter valid integers. The denominator can't be zero")

else:
print(result)

finally:
print("Inside the finally clause")

Output1: This is the output when no exceptions were raised:

Please enter the numerator: 5

Please enter the denominator: 5

1.0

Inside the finally clause

Output 2: This is the output when an exception was raised:

Please enter the numerator: 5

Please enter the denominator: 0

Please enter valid integers. The denominator can't be zero

Inside the finally clause

Note: the else clause and the finally clause are optional, but if you
decide to include both, the finally clause has to be the last clause
in the sequence.

Raising Exceptions

• Python also provides the raise keyword to be used in the context of
exception handling.

• It causes an exception to be generated explicitly.

• Built-in errors are raised implicitly.

Example: The following code accepts a number from the user. The try
block raises a ValueError exception if the number is outside the
allowed range.

try:
x=int(input('Enter a number upto 100: '))
if x > 100:

raise ValueError(x)
except ValueError:

print(x, "is out of allowed range")
else:

print(x, "is within the allowed range")

Output1:

Enter a number upto 100: 60
60 is within the allowed range

Output 2:

Enter a number upto 100: 150
150 is out of allowed range

Example 2: enter amount to be withdrawn. If remaining bal <500 raise
exception

try:
bal=10000
wamt=int(input('Enter amount to be withdrawn: '))
bal=bal-wamt
if bal<500:

raise ValueError(bal)
except ValueError:

print("balance is less than 500, transaction cancelled")
else:

print("transaction succesfull. rem bal",bal)
Output1:
Enter amount to be withdrawn: 9700
balance is less than 500, transaction cancelled

Output 2:
Enter amount to be withdrawn: 6000
transaction succesfull. rem bal 4000

Nested Exceptions

• Exceptions can be nested.

• A nested exception is an exception that occurs while another
exception is being handled.

• When this happens, the processing of the first exception (outer
exception) is temporarily suspended.

• Exception handling begins again with the most recently generated
exception (inner exception).

Nested try-except Blocks

• We can have nested try-except blocks in Python.

• In this case, if an exception is raised in the nested try block, the
nested except block is used to handle it.

• In case the nested except is not able to handle it, the outer except
blocks are used to handle the exception.

x = int(input("enter numerator x value"))
y = int(input("enter denominator y value"))
try:

print("outer try block")
try:

print("nested try block")
print(x / y)

except TypeError as te:
print("nested except block")
print(te)

except ZeroDivisionError as ze:
print("outer except block")
print(ze)

Output 1: when there is no exception only the outer and nested try blocks are
executed but none of the except block is executed and we print output.

enter numerator x value10
enter denominator y value2
outer try block
nested try block
5.0

Output 2: outer and nested try blocks are executed and outer except block
is executed.

enter numerator x value6
enter denominator y value0
outer try block
nested try block
outer except block
division by zero

Advanced Function Calling

Python supports advanced function handling:

1. map statement

2. apply statement

