

Software Engineering

Notes

https://www.tutorialsduniya.com/
https://www.tutorialsduniya.com/

1. The Evolving role of Software

Today, software takes on a dual role. It is a product, and at the same time, the

Vehicle for delivering a product.

As a product, it delivers the computing potential embodied by computer hardware

or more broadly, by a network of computers that are accessible by local hardware.

Whether it resides within a mobile phone or operates inside a mainframe computer,

software is information transformer— producing, managing, acquiring, modifying,

displaying, or transmitting information that can be as simple as a single bit or as

complex as a multimedia presentation derived from data acquired from dozens of

independent sources.

As the vehicle used to deliver the product, software acts as the basis for the control

of the computer (operating systems), the communication of information (networks), and
the creation and control of other programs (software tools and environments).

Software delivers the most important product of our time—information. It transforms

personal data (e.g., an individual’s financial transactions) so that the data can be more

useful in a local context.

Software manages business information to enhance competitiveness;

Software provides a gateway to worldwide information networks (e.g., the Internet).

Software provides the means for acquiring information in all of its forms.

Software role has undergone significant change over the last half-century.

Software industry has become a dominant factor industrialized world.

Software Crisis:

• Software crisis, the symptoms of the problem of engineering the software, began to

enforce the practitioners to look into more disciplined software engineering

approaches for software development.

• The software industry has progressed from the desktop PC to network-based

computing to service-oriented computing nowadays.

• The development of programs and software has become complex with

increasing requirements of users, technological advancements, and computer

awareness among people.

• Software crisis symptoms

• complexity,

• hardware versus software cost,

• delay and costliness,

• poor quality,

• unmanageable nature,

• irresponsibility,

• lack of planning and management practices,

• Change, maintenance and migration,

• etc.

What is Software Engineering?

Watts S. Humphrey is the father of Software Engineering, created the Software Process Program at
Carnegie Mellon University’s Institute (SEI) in the 1980s, and served as its director from 1986 through the
early 1990s. This program was designed to help participants understand and manage the software
development process.

• The solution to these software crises is to introduce systematic software

engineering practices for systematic software development, maintenance,
operation, retirement, planning, and management of software.

Software engineering is the practices (performs) for systematic software development,
maintenance, operation, planning, and management of software.

• The systematic means the methodological and pragmatic way of development,

operation and maintenance of software.

• Systematic development of software helps to understand problems and satisfy the

client needs.

• Development means the construction of software through a series of activities, i.e., analysis,
design, coding, testing, and deployment.

• Maintenance is required due to the existence of errors and faults, modification of

existing features, addition of new features, and technological advancements.

• Operational software must be correct, efficient, understandable, and usable for work at the

client site.

• IEEE defines

The systematic approach to the development, operation, maintenance, and retirement of

software.

Software Engineering -

• It follows that a concerted effort should be made to understand the problem before a

software solution is developed.

. It follows that design becomes a unique activity.

• It follows that software should demonstrate high quality.

• It follows that software should be maintainable, software in all of its forms and across all of

its application domains should be engineered.

Engineering Discipline:

• Engineering is a disciplined approach with some organized steps in a managed
way to construction, operation, and maintenance of software.

• Engineering of a product goes through a series of stages, i.e., planning,

analysis and specification, design, construction, testing, documentation, and
deployment.

• The disciplined approach may lead to better results.

• The general stages for engineering the software include feasibility study and

preliminary investigation, requirement analysis and specification, design,
coding, testing, deployment, operation, and maintenance.

• Development means the construction of software through a series of activities, i.e.,
analysis, design, coding, testing, and deployment.

• Maintenance is required due to the existence of errors and faults, modification of

existing features, addition of new features, and technological advancements.

• Operational software must be correct, efficient, understandable, and usable for work

at the client site.

• IEEE defines

• S.E is the systematic approach to the development,

operation, maintenance, and retirement of software.

1.1 Defining Software

Software is:

(1) instructions (computer programs) that when executed provide desired features,

function, and performance;

(2) data structures that enable the programs to adequately manipulate information, and

(3) descriptive information in both hard copy and virtual forms that describes the

operation and use of the programs.

Software characteristics:

Software is a logical rather than a physical system element. Therefore, software has

characteristics that are considerably different than those of hardware:

1. Software is developed or engineered; it is not manufactured in the classical sense.

Although some similarities exist between software development and hardware

manufacturing, the two activities are fundamentally different.

In both activities, high quality is achieved through good design, but the manufacturing

phase for hardware can introduce quality problems that are nonexistent (or easily

corrected) for software.

Both activities are dependent on people, but the relationship between people applied

and work accomplished is entirely different.

Both activities require the construction of a “product,” but the approaches are

different. Software costs are concentrated in engineering. This means that software

projects cannot be managed as if they were manufacturing projects.

2. Software doesn’t “wear out.”

Stated simply, the hardware begins to wear out. Software doesn’t “wear out.” But

Software does deteriorate (i.e., become progressively worse)!

3. Although the industry is moving toward component-based construction, most

software continues to be custom built.

As an engineering discipline evolves, a collection of standard design components is

created. Standard screws and off-the-shelf integrated circuits are only two of thousands of

standard components that are used by mechanical and electrical engineers as they design

new systems.

The reusable components have been created so that the engineer can concentrate on

the truly innovative elements of a design, that is, the parts of the design that represent

something new.

In the hardware world, component reuse is a natural part of the engineering process.

In the software world, it is something that has only begun to be achieved on a broad

scale.

A software component should be designed and implemented so that it can be reused in

many different programs. For example, today’s interactive user interfaces are built with

reusable components that enable the creation of graphics windows, pull-down menus, and

a wide variety of interaction mechanisms. The data structures and processing detail

required to build the interface are contained within a library of reusable components for

interface construction.

• Software has logical properties rather than physical.

• Software is mobile to change i.e., software is flexible.

• Software is produced in an engineering manner rather than in classical sense.

• Software becomes obsolete but does not wear out or die.

• Software has a certain operating environment, end user, and customer.

• Software development is a labor-intensive task

1.2 The Changing Nature of Software:
(Application Domains i.e., Types of Software or Categories of Software)

Today, different broad categories of computer software present continuing

challenges for software engineers:

i. System software—a collection of programs written to service other programs.

System software processes complex, but determinate information structures.
e.g., compilers, editors, and file management utilities

Systems applications process largely indeterminate data.

(e.g., operating system components, drivers, networking software, telecommunications
processors)

ii. Application software—stand-alone programs that solve a specific business need.

Applications in this area process business or technical data in a way that facilitates

business operations or management/technical decision making.

e.g., point-of-sale transaction processing, real-time manufacturing process control.

iii. Engineering/scientific software—is a special software to implement Engineering and

Scientific applications. Applications range from astronomy to volcanology, from

automotive stress analysis to space shuttle orbital dynamics, and from molecular biology

to automated manufacturing. However, modern applications within the

engineering/scientific area are moving away from conventional numerical algorithms.

Computer-aided design, system simulation, and other interactive applications have begun

to take on real-time and even system software characteristics.

iv. Embedded software—resides within a product or system and is used to implement and

control features and functions for the end user and for the system itself.

e.g., key pad control for a microwave oven.

Provide significant function and control capability

e.g., digital functions in an automobile such as fuel control, dashboard displays, and

braking systems.

v. Product-line software—designed to provide a specific capability for use by many

different customers.

e.g., inventory control products, word processing, spreadsheets, computer graphics,

multimedia, entertainment, database management, and personal and business financial

applications.

vi. Web applications—called “WebApps,” this network-centric software category spans a

wide array of applications. WebApps are linked with hypertext files. WebApps are

evolving into sophisticated computing environments that not only provide stand-alone

features, computing functions, and content to the end user, but also are integrated with

corporate databases and business applications.

vii. Artificial intelligence software— makes use of nonnumeric algorithms to solve complex

problems of straightforward analysis.

Applications within this area include robotics, expert systems, pattern recognition

(image and voice), artificial neural networks, theorem proving, and game playing.

viii. Open-world computing—Software related to wireless networking may soon lead to true

pervasive, distributed computing. The challenge for software engineers will be to develop

systems and application software that will allow mobile devices, personal computers, and

enterprise systems to communicate across vast networks.

ix. Net sourcing—the World Wide Web is rapidly becoming a computing engine as well as a

content provider. The challenge for software engineers is to architect simple (e.g.,

personal financial planning) and sophisticated applications that provide a benefit to

targeted end-user markets worldwide.

x. Open source—a growing trend that results in distribution of source code for systems

applications (e.g., operating systems, database, and development environments) so that

many people can contribute to its development.

The challenge for software engineers is to build source code that is self-descriptive,

but more importantly, to develop techniques that will enable both customers and

developers to know what changes have been made and how those changes manifest

themselves within the software.

And other soft wares are personal, mobile, ubigititous and business

Tools

Methods

Process

A quality focus

1.3 Legacy Software
Older programs —often referred to as legacy software—have been the focus of

continuous attention and concern since the 1960s. Dayani-Fard and his colleagues [Day99]

describe legacy software in the following way:

Legacy software systems . . . were developed decades ago and have been continually

modified to meet changes in business requirements and computing platforms. The

maintenance of such systems is causing headaches for large organizations who find them

costly to maintain and risky to evolve.

Unfortunately, there is sometimes one additional characteristic that is present in legacy

software—poor quality.

Legacy systems sometimes have inextensible designs, complicated code, poor or

nonexistent documentation, test cases and results that were never archived, a poorly

managed change history—the list can be quite long.

legacy systems often evolve for one or more of the following reasons:

• The software must be adapted to meet the needs of new computing environments

or technology.

• The software must be enhanced to implement new business requirements.

• The software must be extended to make it interoperable with other more modern
systems or databases.

• The software must be re-architected to make it viable within a network environment.

2. Software Engineering- A Layered Technology:

Software engineering is a layered technology. Referring to Figure, any engineering

approach (including software engineering) must rest on an organizational

commitment to quality. Total quality management, Six Sigma, and similar

philosophies foster a continuous process improvement culture, and it is this culture that

ultimately leads to the development of increasingly more effective approaches to

software engi- neering. The bedrock that supports software engineering is a quality

focus.

The foundation for software engineering is the process layer. The software

engineering process is the glue that holds the technology layers together and enables

rational and timely development of computer software. Process defines a framework

Software
engineering
layers

 that must be established for effective delivery of software engineering technology.

A process is a collection of activities, actions, and tasks that are performed when some work
product is to be created.

FIGURE 1.3

The software process forms the basis for management control of

software projects and establishes the context in which technical methods

are applied, work products (models, documents, data, reports, forms,

etc.) are produced, milestones are established, quality is ensured, and

change is properly managed.

Software engineering methods provide the technical how-to’s for

building soft- ware. Methods encompass a broad array of tasks that

include communication, requirements analysis, design modeling,

program construction, testing, and sup- port. Software engineering

methods rely on a set of basic principles that govern each area of the

technology and include modeling activities and other descriptive

techniques.

Software engineering tools provide automated or semi-automated

support for the process and the methods. When tools are integrated so

that information created by one tool can be used by another, a system

for the support of software development, called computer-aided

software engineering, is established.

3. Softare Myths
 Software myths propagate false beliefs and confusion in the minds of management,

users and developers.

 Software myths –false beliefs and erroneous beliefs about software and the process
used to build it i.e., these are the false beliefs about the software development.

 Today, most knowledgeable software engineering professionals recognize myths for

what they are—misleading attitudes that have caused serious problems for managers

and practitioners alike.

 Software Myths are three types

1. Managers Myths

2. Customers Myths (User Myths)

3. Practitioners Myths (Developer Myths)

i. Management myths. Managers with software responsibility, like managers in most

disciplines, are often under pressure to maintain budgets, keep schedules from slipping,

and improve quality. Like a drowning person who grasps at a straw, a software manager
often grasps at belief in a software myth, if that belief will lessen the pressure (even

temporarily).

Myth: We already have a book that’s full of standards and procedures for building software.

Won’t that provide my people with everything they need to know?

Reality: The book of standards may very well exist, but is it used?

Are software practitioners aware of its existence?

Does it reflect modern software engineering practice?

Is it complete?

Is it adaptable?

Is it streamlined to improve time-to-delivery while still maintaining a
focus on quality? In many cases, the answer to all of these questions is “no.”

Myth: If we get behind schedule, we can add more programmers and catch up.

Reality: Software development is not a mechanistic process like manufacturing. In the words

of Mr. Brooks “adding people to a late software project makes it later.”

At first, this statement may seem counterintuitive. However, as new people are added,

people who were working must spend time educating the newcomers, thereby reducing the

amount of time spent on productive development effort. People can be added but only in a

planned and well coordinated manner.

Myth: If I decide to outsource the software project to a third party, I can just relax.

Reality: If an organization does not understand how to manage and control software projects
internally, it will invariably struggle when it outsources software projects.

Myth: My people (Developers) have modern software development tools, after all, we buy them the
newest computers.
Reality: It takes much more than the latest model mainframe, workstation, or PC to do high-quality
software development. Computer-aided software engineering (CASE) tools are more important than
hardware for achieving good quality and productivity, yet the majority of software developers still do
not use them effective

ii. Customer myths. A customer who requests computer software may be a person at

the next desk, a technical group down the hall, the marketing/sales department, or an

outside company that has requested software under contract. In many cases, the customer

believes myths about software because software managers and practitioners do little to

correct misinformation. Myths lead to false expectations (by the customer) and, ultimately,

dissatisfaction with the developer.

Myth: A general statement of objectives is sufficient to begin writing programs—we can fill

in the details later.

Reality: Although a comprehensive and stable statement of requirements is not always

possible, an ambiguous “statement of objectives” is a recipe for disaster. Unambiguous

requirements (usually derived iteratively) are developed only through effective and

Continuous communication between customer and developer.

Myth: Software requirements continually change, but change can be easily accommodated

because software is flexible.

Reality: It is true that software requirements change, but the impact of change varies with the

time at which it is introduced. When requirements changes are requested early (before design

or code has been started), the cost impact is relatively small. However, as time passes, the

cost impact grows rapidly—resources have been committed, a design framework has been

established, and change can requires additional resources and major design modification.

iii. Practitioner’s myths. Myths that are still believed by software practitioners have

been fostered by over 50 years of programming culture. During the early days,

programming was viewed as an art form. Old ways and attitudes die hard.

Myth: Once we write the program and get it to work, our job is done.

Reality: Someone once said that “the sooner you begin ‘writing code,’ the longer it’ll take

you to get done.” Industry data indicate that between 60 and 80 percent of all effort expended

on software will be expended after it is delivered to the customer for the first time.

Myth: Until I get the program “running” I have no way of evaluate its quality.

Reality: One of the most effective software quality assurance mechanisms can be applied

from the inception of a project—the technical review. Software reviews are a “quality filter”

that have been found to be more effective than testing for finding certain classes of software

defects.

Myth: The only deliverable work product for a successful project is the working program.

Reality: A working program is only one part of a software configuration that includes many

elements. A variety of work products (e.g., models, documents, plans) provide a foundation

for successful engineering and, more important, guidance for software support.

Myth: Software engineering will make us creates huge and unnecessary documentation and

will always slow down software development.

Reality: Software engineering is not about creating documents. It is about creating a quality

product. Better quality leads to reduced rework. And reduced rework results in faster delivery

times. There by controlling its impact and cost.

4. The Software Process

 A process is a collection of activities, actions, and tasks that are performed when
some work product is to be created.

 An activity attempts to achieve a broad objective (e.g., communication with

stakeholders) and is applied regardless of the application domain, size of the project or

the complexity of the effort with which software engineering is to be applied.

 An action (e.g., architectural design) includes a set of tasks that produce a major work
product (e.g., gathering the requirements or an architectural design model).

 A task focuses on a small, but well-defined objective (e.g., conducting a review of
requirement analysis) that produces a real outcome.

 A Work Product an output of an action. They are individually estimated, budgeted,

assigned, executed, measured and controlled.

 The goal of s/w process is always to deliver software in a timely manner and with

sufficient quality to satisfy those who have sponsored its creation and those who will

use it.

 A process framework establishes the foundation for a complete software engineering process

by identifying a small number of framework activities that are applicable to all software

projects, regardless of their size or complexity. In addition, the process framework

encompasses (consists of) a set of umbrella activities that are applicable across the entire

software process.

A generic process framework for software engineering encompasses five activities:

i. Communication. Before any technical work can commence, it is critically important

to communicate and collaborate with the customer (and other stakeholders). The intent

is to understand stakeholders’ objectives for the project and to gather requirements

that help define software features and functions.

i. Planning. A Planning activity creates a “map” defines the work by describing the tasks,

risks and resources, work products and work schedule. The map—called a software project

plan— defines the software engineering work by describing the technical tasks to be

conducted, the risks that are likely, the resources that will be required, the work

products to be produced, and a work schedule.

ii. Modeling. Modeling creates a “sketch” or “blue print” of the thing so that we will

understand the requirements, how the constituent parts fit together, and many other

characteristics.

If required, we refine the sketch into greater and greater detail in an effort to better

understand the problem and how we are going to solve it. A software engineer does

the same thing by creating models to better understand software requirements and the

design that will achieve those requirements.

iv. Construction. This activity combines code generation (either manual or automated)

and the testing that is required uncovering errors in the code.

v. Deployment. The software (as a complete entity or as a partially completed

increment) is delivered to the customer who evaluates the delivered product and
provides feedback based on the evaluation.

These five generic framework activities can be used during the development of small, simple

programs, the creation of large Web applications, and for the engineering of large, complex

computer-based systems. The details of the software process will be quite different in each case, but

the framework activities remain the same.

Software engineering process framework activities are balanced by a number of umbrella activities.

In general, umbrella activities are applied throughout a software project and help a software team

manage and control progress, quality, change, and risk.

Typical umbrella activities include:

1. Software project tracking and control—allows the software team to review progress

against the project plan and take any necessary action to maintain the schedule.

2. Risk management—reviews the risks that may affect the outcome of the project or the
quality of the product.

3. Software quality assurance—defines and conducts the activities required to ensure
software quality.

4. Technical reviews— evaluates the software engineering work products in an effort to
uncover and remove errors before they are transmitted to the next activity.

5. Measurement—defines and collects process, project, and product measures that assist the

team in delivering software that meets stakeholders’ needs; can be used in conjunction with

all other framework and umbrella activities.

6. Software configuration management—manages the effects of change throughout the

software process.

7. Reusability management—defines criteria for work product reuse (including software

components) and establishes mechanisms to achieve reusable components.

8. Work product preparation and production—include the activities required to create

work products such as models, documents, logs, forms, and lists. Each of these umbrella

activities is discussed in detail later in this book.

For many software projects, framework activities are applied iteratively as a project progresses.

That is, communication, planning, modeling, construction, and deployment are applied repeatedly

through a number of project iterations. Each project iteration produces a software increment that

provides stake holders (customers or developers or management) with a subset of overall software

features and functionality. As each increment is produced, the software becomes more and more

complete.

4.1 A GENERIC SOFT WARE PROCESS MODEL:

A process was defined as a collection of work activities, actions, and tasks that are

performed when some work product is to be created. Each of these activities, actions, and

tasks reside within a framework or model that defines their relationship with the process

and with one another.

 The software process is represented schematically in the above figure.

Defining a Framework Activity

 A generic process framework for software engineering defines five framework
activities

o communication,

o planning,

o modeling,

o construction, and

o deployment.

 In addition, a set of umbrella activities—project tracking and control, risk

management, quality assurance, configuration management, technical

reviews, and others—are applied throughout the process.

 Referring to the figure, each framework activity is populated by a set of
software engineering actions.

 Each software engineering action is defined by a task set that identifies

 the work tasks that are to be completed,

 the work products that will be produced,

 the quality assurance points that will be required, and

 the milestone(Goal) that will be used to indicate progress or status of the work.

The work associated with software engineering can be categorized into three generic phases,

regardless of application area, project size, or complexity.

1. Definition phase focuses on what. That is, during definition, the software engineer

attempts to identify what information is to be processed, what function and performance

are desired, what system behavior can be expected, what interfaces are to be established,

what design constraints exist, and what validation criteria are required to define a

successful system. The key requirements of the system and the software are identified.

2. Development phase focuses on how. A software engineer attempts to define how data are

to be structured, how function is to be implemented within a software architecture, how

procedural details are to be implemented, how interfaces are to be characterized, how the

design will be translated into a programming language (or nonprocedural language), and

how testing will be performed.

3. Support phase focuses on change associated with error correction, adaptations required

as the software's environment evolves, and changes due to enhancements brought about by

changing customer requirements.

The process flow—describes how the framework activities, the actions and the tasks that occur

within each framework activity are organized with respect to sequence and time and is illustrated in

the below Figure.

Types of Process flows:
 A linear process flow executes each of the five framework activities in

sequence, beginning with communication and culminating with deployment
which is shown in the following Figure.

 An iterative process flow repeats one or more of the activities before

proceeding to the next (shown in the following Figure).

 An evolutionary process flow executes the activities in a “circular” manner. Each circuit through the

five activities leads to a more complete version of the software (shown in the following Figure).

 A parallel process flow executes one or more activities in parallel with other
activities

e.g., modeling for one aspect of the software might be executed in parallel

with construction of another aspect of the software. (shown in the following

figure)

5. CAPABILITY MATURITY MODEL INTEGRATION (CMMI)

The Software Engineering Institute (SEI) has developed a comprehensive model predicated

on a set of software engineering capabilities that should be present as organizations reach different levels of

process maturity.

To determine an organization’s current state of process maturity, the SEI uses an assessment that results in a

six point grading scheme.

Objectives of CMMI:

1. Fulfilling customer needs and expectations.

2. Value creation for investors/stockholders.

3. Market growth is increased.

4. Improved quality of products and services.

5. Enhanced reputation in Industry.

The SEI approach provides a measure of the global effectiveness of a company's software engineering

practices and establishes five process maturity levels that are defined in the following manner:

1. Process Maturity level 0 : Initial or Incomplete
 The process area (e.g., requirements management) is either not performed or does not achieve all

goals and objectives defined by the CMMI for level-1 capability.

2. Process Maturity level 1 : Performed

 All of the specific goals of the process area (as defined by the CMMI) have been satisfied. Work

tasks required to produce defined work products are being conducted.

3. Process Maturity level 2 : Managed
 All level-1 criteria have been satisfied. In addition, all work associated with the process area

conforms to an organizationally defined policy; all people doing the work have access to enough

recourses to get the job done; stakeholders are actively involved in the process are as required; all work

task and work products are monitored, controlled, and reviewed and are evaluated for quality.

4. Process Maturity level 3 : Defined
 All level-2 criteria have been achieved. In addition the process is modified from the organization’s

set of standard processes according to the organization’s guidelines and contributes work products,

measures and other process improvement information to the organizational process resources.

5. Process Maturity level 4 : Quantitatively managed:
 All level-2 criteria have been achieved. In addition the process is is controlled and improved using

measurements and quantitative assessment (evaluation).

6. Process Maturity level 5 : Optimized
All level-2 criteria have been achieved. In addition the process area is adapted and optimized to meet

changing customer needs and to continually improve the efficacy of the process.

The CMMI defines each process area in terms of “specific goals” and the “specific practices” required to

achieve these goals.
Specific Goals establish the characteristics that must exist if the activities Implied by a process area are to be effective.

Specific Practices refine a goal into a set of process-related activities.

For example, For Project Planning frame activity that has some key process areas (KPA) defined by the

CMMI. The Specific Goals (SG) and the associated Specific Practices (SP) defined for project planning are

SG 1: Establish estimates
 SP 1.1: Estimate the scope of the project

SP 1.2: Define Project life cycle

SP 1.3: Determine the estimates of effort and cost

SG 2: Develop a Project Plan
SP 2.1: Establish the budget and schedule

SP 2.1: Identify project risks

SP 2.1: Plan for data management

 SP 2.1: Plan for needed knowledge and skills

 SP 2.1: Establish the project plan

SG 3: Obtain commitment to the plan
 SP 3.1: Review plans that affect the project

The CMMI also defines a set of generic goals and related practices for each process are. To illustrate the

generic goals (GG) and generic practices (GP) for the project planning, process area are:

GG 1: Achieve specific goals
 GP 1.1: Perform base practices

GG 2: Institutionalize a managed process

 GP 2.1: Plan the process

 GP 2.2: Provide resources

 GP 2.3: assign responsibility

 GP 2.4: train the people

 GP 2.5: monitor and control the process

 6. Process Patterns
 Ambler has proposed a template for describing a process pattern:

 A Process Pattern describes a process-related problem that is encountered (occurred)

during software engineering work, identifies the environment in which the problem has

been encountered, and suggests one or more proven solutions to the problem.

 Stated in more general terms, a process pattern provides with a template a consistent

method for describing problem solutions within the situation of the software process.

 By combining patterns, a software team can solve problems and construct a process that

best meets the needs of a project.

 Every software team encounters problems as it moves through the software process.

 It would be useful if proven solutions to these problems were readily available to the team

so that the problems could be addressed and resolved quickly.

 In some cases, a pattern might be used to describe a problem and solution associated with

a complete process model (e.g., prototyping).

 In other situations, patterns can be used to describe a problem and solution associated

with a framework activity (e.g., planning) or an action within a framework activity (e.g.,

project estimating).

1. Pattern Name. The pattern is given a meaningful name describing it within the context of

the software process (e.g., TechnicalReviews).

2. Environment. The environment in which the pattern is encountered and the issues that

make the problem visible and may affect its solution.

3. Type. The pattern type is specified. Ambler suggests three types:

1. Stage pattern—defines a problem associated with a framework activity for the

process. Since a framework activity encompasses multiple actions and work tasks, a stage

pattern incorporates multiple task patterns (see the following) that are relevant to the stage

(framework activity).

An example of a stage pattern might be EstablishingCommunication. This pattern

would incorporate the task pattern RequirementsGathering and others.

2. Task pattern—defines a problem associated with a software engineering action or

work task and relevant to successful software engineering practice (e.g.,

RequirementsGathering is a task pattern).

3. Phase pattern—define the sequence of framework activities that occurs within the

process.

4.Initial context. Describes the conditions under which the pattern applies. Prior to

the initiation of the pattern:

(1) What organizational or team-related activities have already occurred?

(2) What is the entry state for the process?

(3) What software engineering information or project information already exists?

For example, the Planning pattern (a stage pattern) requires that

(1) customers and software engineers have established a collaborative

communication;

(2) the project scope, basic business requirements, and project constraints are known.

5.Problem. The specific problem to be solved by the pattern.

6.Solution. Describes how to implement the pattern successfully. This section describes

how the initial state of the process (that exists before the pattern is implemented) is modified

as a consequence of the initiation of the pattern.

7.Resulting Context. Describes the conditions that will result once the pattern has

been successfully implemented. Upon completion of the pattern:

(1) What organizational or team-related activities must have occurred?

(2) What is the exit state for the process?

(3) What software engineering information or project information has been developed?

8.Related Patterns. Provide a list of all process patterns that are directly related to other.

Conclusion on Process Patterns

 Process patterns provide an effective mechanism for addressing problems associated with

any software process.

7. PROCESS ASSESSMENT AND IMPROVEMENT
 The existence of a software process is no guarantee that software will be delivered on time,

that it will meet the customer’s needs.

 Process patterns must be coupled with solid software engineering practice

 In addition, the process itself can be assessed to ensure that it meets a set of basic process
criteria that have been shown to be essential for a successful software engineering.

A number of different approaches to software process assessment and improvement have

been proposed over the past few decades:

1. Standard CMMI Assessment Method for Process Improvement (SCAMPI)—
provides a five-step process assessment model that incorporates five phases: initiating,

diagnosing, establishing, acting, and learning. The SCAMPI method uses the SEI CMMI as

the basis for assessment.

2. CMM-Based Appraisal for Internal Process Improvement (CBA IPI)— provides

a diagnostic technique for assessing the relative maturity of a software organization; uses the

SEI CMM as the basis for the assessment.

3. SPICE (ISO/IEC15504)— Software Process Improvement and Capability

Determination (SPICE), is a set of technical standards documents for the computer software

development process and related business management functions. It is one of the

joint International Organization for Standardization (ISO) and International Electro technical

Commission (IEC) standards, which was developed by the ISO and IEC joint subcommittee

4. ISO 9001:2000 for Software—a generic standard that applies to any organization

that wants to improve the overall quality of the products, systems, or services that it

provides. Therefore, the standard is directly applicable to software organizations and

companies.

https://en.wikipedia.org/wiki/Technical_standard
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/Software_development
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission

8. PROCESS MODELS

 Process model prescribes a process flow (also called a work flow)—that is, the manner
in which the process elements are interrelated to one another.

 All software process models can accommodate the five generic framework activities,

but each applies a different emphasis to these activities and defines a process flow that
invokes each framework activity in a different manner.

8.1 The Waterfall Model

 The waterfall model, sometimes called the classic life cycle model

 Winston Royce introduced the Waterfall Model in 1970.

 It suggests a systematic sequential approach to software development that begins with

customer specification of requirements and progresses through planning, modeling,

construction, and deployment.

 The Waterfall Model was the first Process Model to be introduced. It is also referred to as

a linear-sequential life cycle model.

 It is very simple to understand and use.

 The Waterfall model is the earliest SDLC approach that was used for software development.

 The waterfall Model illustrates the software development process in a linear sequential flow.

 This means that any phase in the development process begins only if the previous phase is

complete. In this waterfall model, the phases do not overlap.

 It is used when requirements are reasonably well understood.

 Communication: All possible requirements of the system to be developed are captured in this

phase and documented in a requirement specification document. The aim of this phase is to

understand the exact requirements of the customer and to document them properly. Both the

customer and the software developer work together so as to document all the functions,

performance, and interfacing requirement of the software. It describes the "what" of the system to

be produced and not "how."In this phase, a large document called Software Requirement

Specification (SRS) document is created which contained a detailed description of what the system

will do in the common language.

 Planning: A Planning activity creates a “map” defines the work by describing the tasks, risks and

resources, work products and work schedule. The map—called a software project plan— defines

the software engineering work by describing the technical tasks to be conducted, the risks that are

likely, the resources that will be required, the work products to be produced, and a work schedule.

It is also used to estimating the cost and budget of the project.

 Modeling (Analysis and design): The requirement specifications from first phase are studied in

this phase and the system design is prepared. This system design helps in specifying hardware and

system requirements and helps in defining the overall system architecture.

 Construction (Coding and Testing: With inputs from the system design, the system is first

developed in small programs called units, which are integrated in the next phase. Each unit is

developed and tested for its functionality, which is referred to as Unit Testing. All the units

developed in the implementation phase are integrated into a system after testing of each unit. Post

integration the entire system is tested for any faults and failures.

 Deployment (delivery, feedback and Maintenance of system): Once the functional and non-

functional testing is done; the product is deployed (i.e., delivered to the customer) in the customer

environment or released into the market. There are some issues which come up in the client

environment. To fix those issues, versions are released. Also to enhance the product some better

versions are released. Maintenance is done to deliver these changes in the customer environment.

Some of the major advantages of the Waterfall Model are as follows:

 Simple and easy to understand and use

 It can serve as a useful process model in situations where requirements are fixed and work is to

proceed to complete in a linear manner.

 Phases are processed and completed one at a time.

 Works well for smaller projects where requirements are very well understood.

 Clearly defined stages.

 Well understood milestones.

 Easy to arrange tasks.

 Process and results are well documented.

The major disadvantages of the Waterfall Model are as follows:

The disadvantage of waterfall development is that it does not allow much reflection or revision. Once an

application is in the testing stage, it is very difficult to go back and change something that was not well-

documented or thought upon in the concept stage.

 No working software is produced until late during the life cycle.

 Not a good model for complex and object-oriented projects.

 Poor model or not suitable for long and ongoing projects (large scale projects).

 Not suitable for the projects where requirements are changing frequently and requirements are not

clear or not defined properly.

 It is difficult to measure progress within stages.

 Cannot accommodate changing requirements.

 There exists blocking stages in the teams because one team is working another team may wait.

8.2 Incremental Process Models
 There are many situations in which initial software requirements are reasonably well-defined, but

the overall scope of the development effort may not use a purely linear process. In addition, there may

be a convincing need to provide a limited set of software functionality to users quickly and then

improve and expand on that functionality in later software releases. In such cases, a process model that

is designed to produce the software in increments is chosen.

8.2.1. Incremental Model

 The incremental process model is also known as the Successive version model.

 First, a simple working system implementing only a few basic features is built first and then

that is delivered to the customer. Then thereafter many successive iterations/ versions are

implemented and delivered to the customer until the desired system is released.

8.2.1 There are many situations in which initial software requirements are reasonably
well defined, but the overall scope of the development effort difficulty to

implement linear process.

8.2.2 Need to provide a limited set of software functionality to users quickly and then

refine and expand on that functionality in later software releases.

8.2.3 In such cases, we can choose a process model that is designed to produce the
software in increments.

8.2.4 The incremental model combines elements of linear and parallel process flows.
The above Figure shows the incremental model which applies linear sequences

8.2.5 Each linear sequence produces deliverable “increments” of the software in a

manner that is similar to the increments produced by an evolutionary process flow.

8.2.6 For example, MS-Word software developed using the incremental paradigm might

deliver basic file management, editing, and document production functions in the
first increment;

o more sophisticated editing and document production capabilities in the second
increment;

o spelling and grammar checking in the third increment; and

o advanced page layout capability in the fourth increment.
o It should be noted that the process flow for any increment can incorporate the

prototyping paradigm.

8.2.7 When an incremental model is used, the first increment is often a core product.

That is, basic requirements are addressed but many supplementary features

remain undelivered. The core product is used by the customer. As a result of use

evaluation, a plan is developed for the next increment.

8.2.8 The plan addresses the modification of the core product to better meet the needs of
the customer and the delivery of additional features and functionality.

8.2.9 This process is repeated following the delivery of each increment, until the

complete product is produced.

8.2.10 The incremental process model focuses on the delivery of an operational product

with each increment.

8.2.11 Incremental development is particularly useful when staffing is unavailable for a

complete implementation by the business deadline that has been established for
the project.

8.2.12 Early increments can be implemented with fewer people. If the core product is

well received, then additional staff (if required) can be added to implement the

next increment.

When we use the Incremental Model?

o When the requirements are better.

o A project has a lengthy development schedule.

o When the customer demands a quick release of the product.

o You can develop basic product or core product first.

Advantage of Incremental Model

o Errors are easy to be recognized.

o Easier to test and debug

o More flexible.

o Simple to manage risk because it handled during its iteration.

o The Client gets important functionality early.

Disadvantage of Incremental Model

o Need for good planning

o Total Cost is high.

o Well defined module interfaces are needed.

8.2.2. Rapid application development model (RAD)

-> The Rapid Application Development Model was first proposed by IBM in the 1980s.

 -> The critical feature of this model is the use of powerful development tools and techniques.

-> A software project can be implemented using this model if the project can be broken down into

small modules wherein each module can be assigned independently to separate teams. These modules

can finally be combined to form the final product.

-> The process involves building a rapid prototype, delivering it to the customer, and taking feedback.

After validation by the customer, the SRS document is developed and the design is finalized.

The Modeling Activity further contains the following three Phases:

Business Modeling:

The business model for the product under development is designed in terms of flow of information and the

distribution of information between various business channels. A complete business analysis is performed to

find the vital information for business, how it can be obtained, how and when is the information processed

and what are the factors driving successful flow of information.

Data Modeling:

The information gathered in the Business Modeling phase is reviewed and analyzed to form sets of data

objects vital for the business. The attributes of all data sets is identified and defined. The relation between

these data objects are established and defined in detail in relevance to the business model.

Process Modeling:

The data object sets defined in the Data Modeling phase are converted to establish the business information

flow needed to achieve specific business objectives as per the business model. The process model for any

changes or enhancements to the data object sets is defined in this phase. Process descriptions for adding,

deleting, retrieving or modifying a data object are given.

When to use RAD Model?

When the customer has well-known requirements, the user is involved throughout the life cycle, the project

can be time boxed, the functionality delivered in increments, high performance is not required, low

technical risks are involved and the system can be modularized. In these cases, we can use the RAD Model.

Advantages:

 The use of reusable components helps to reduce the cycle time of the project.

 Feedback from the customer is available at the initial stages.

 Reduced costs as fewer developers are required.

 The use of powerful development tools results in better quality products in comparatively shorter time

spans.

 The progress and development of the project can be measured through the various stages.

 It is easier to accommodate changing requirements due to the short iteration time spans.

Disadvantages:

 The use of powerful and efficient tools requires highly skilled professionals.

 The absence of reusable components can lead to the failure of the project.

 The team leader must work closely with the developers and customers to close the project in time.

 The systems which cannot be modularized suitably cannot use this model.

 Customer involvement is required throughout the life cycle.

 It can’t be utilized for smaller projects, unfortunately.

 It is not meant for small-scale projects as in such cases, the cost of using automated tools and

techniques may exceed the entire budget of the project.

Applications:

1. This model should be used for a system with known requirements and requiring a short development

time.

2. It is also suitable for projects where requirements can be modularized and reusable components are also

available for development.

3. The model can also be used when already existing system components can be used in developing a new

system with minimum changes.

4. This model can only be used if the teams consist of domain experts. This is because relevant knowledge

and the ability to use powerful techniques are a necessity.

5. The model should be chosen when the budget permits the use of automated tools and techniques

required.

8.3 Evolutionary Process Models

 Evolutionary model is a combination of Iterative and Incremental model of software

development life cycle.

 They allow developing more complete versions of the software.

 Evolutionary process models produce an increasingly more complete version of the software with

every iteration.

 Advantages of Evolutionary Model

There are many advantages of evolutionary model, some main advantages are mentioned below;

1. The big advantage of the evolutionary model is that the user has checked every stage during the

development and it is helpful in achieving customer confidence.

2. There are fewer chances of errors because all the modules are well seen.

3. It helps to reduce the risk of software projects.

4. It also reduces the cost of development.

5. Minimize serious problems during testing.

Disadvantages of Evolutionary Model

1. The delivery of full software can be late due to different changes by customers during development.

2. It is difficult to divide the problem into several parts that would be acceptable to the customer

which can be incrementally implemented and delivered.

https://www.geeksforgeeks.org/software-engineering-iterative-waterfall-model/
https://www.geeksforgeeks.org/software-engineering-incremental-process-model/
https://t4tutorials.com/software-testing-tutorials/

Following are the evolutionary process models.

1. The prototyping model

2. The spiral model

3. The Concurrent development model

8.3.1. The Prototyping model

 Prototype is defined as first or preliminary form using which other forms are copied or derived.

 Prototype model is a set of general objectives for software.

 It does not identify the requirements like detailed input, output.

 It is software working model of limited functionality.

 In this model, working programs are quickly produced.

The different phases of Prototyping model are:

1. Communication
In this phase, developer and customer meet and discuss the overall objectives of the software.

2. Quick design

 Quick design is implemented when requirements are known.

 It includes only the important aspects like input and output format of the software.

 It focuses on those aspects which are visible to the user rather than the detailed plan.

 It helps to construct a prototype.

3. Modeling quick design

 This phase gives the clear idea about the development of software because the software is now built.

 It allows the developer to better understand the exact requirements.

4. Construction of prototype
 The prototype is evaluated by the customer itself.

5. Deployment, delivery, feedback

 If the user is not satisfied with current prototype then it refines according to the requirements of the user.

 The process of refining the prototype is repeated until all the requirements of users are met.

 When the users are satisfied with the developed prototype then the system is developed on the basis of

final prototype.

Advantages of Prototyping Model

 Prototype model need not know the detailed input, output, processes, adaptability of operating system and

full machine interaction.

 In the development process of this model users are actively involved.

 The development process is the best platform to understand the system by the user.

 Errors are detected much earlier.

 Gives quick user feedback for better solutions.

 It identifies the missing functionality easily. It also identifies the confusing or difficult functions.

Disadvantages of Prototyping Model:

 The client involvement is more and it is not always considered by the developer.

 It is a slow process because it takes more time for development.

 Many changes can disturb the rhythm of the development team.

 It is a thrown away prototype when the users are confused with it.

Example:

 If a customer defines a set of general objectives for software, but does not identify

detailed input, processing, or output requirements, in such situation prototyping paradigm

is best approach.

 If a developer may be unsure of the efficiency of an algorithm, the adaptability of an

operating system then he can go for this prototyping method.

8.3.2. The Spiral model

 Spiral model is a risk driven process model. It is used for generating the software projects.

 In spiral model, an alternate solution is provided if the risk is found in the risk analysis, then alternate

 solutions are suggested and implemented.

 It is a combination of prototype and sequential model or waterfall model.

 In one iteration all activities are done, for large projects the output is small.

 The Spiral model is proposed by Barry Boehm. The spiral model is an evolutionary software

process model that couples the iterative nature of prototyping with the controlled and systematic

aspects of the waterfall model.

 It provides the potential for rapid development of increasingly more complete versions of the

software.

 Using the spiral model, software is developed in a series of evolutionary releases. During early

iterations, the release might be a paper model or prototype (sample). During later iterations,

increasingly more complete versions of the software are produced.

 Anchor point milestones- is a combination of work products and conditions that are achieved

along the path of the spiral and these are noted for each evolutionary pass.

 The first circuit around the spiral might result in the development of product specification;

subsequent passes around the spiral might be used to develop a prototype and then progressively

more refined versions of the software.

 Each pass through the planning region results in adjustments to the project plan. Cost and

schedule are adjusted based on feedback derived from the customer after delivery. In addition, the

project manager adjusts the planned number of iterations required to complete the software.

 It maintains the systematic stepwise approach suggested by the classic life cycle but incorporates

it into an iterative framework that more realistically reflects the real world.

 The first circuit around the spiral might represent a “concept development project” which starts

at the core of the spiral and continues for multiple iterations until concept development is

complete.

The framework activities of the spiral model are as shown in the following figure.

NOTE: The description of the phases of the spiral model is same as that of the other process models.

Advantages of Spiral Model

 It reduces high amount of risk.

 It is good for large and critical projects.

 It gives strong approval and documentation control.

 In spiral model, the software is produced early in the life cycle process.

Disadvantages of Spiral Model

 It can be costly to develop a software model.

 It is not used for small projects.

8.3.3. The concurrent development model

 The concurrent development model is called as concurrent process model.

 The communication activity has completed in the first iteration and exits in the awaiting changes state.

 The modeling activities completed its initial communication and then go to the under development state.

 If the customer specifies the change in the requirement, then the modeling activity moves from the under

development state into the awaiting change state.

 The concurrent process model activities moving from one state to another state.

Advantages of the concurrent development model

 This model is applicable to all types of software development processes.

 It is easy for understanding and use.

 It gives immediate feedback from testing.

 It provides an accurate picture of the current state of a project.

Disadvantages of the concurrent development model

 It needs better communication between the team members. This may not be achieved all the time.

 It requires remembering the status of the different activities.

9. THE UNIFIED PROCESS

 The unified process related to “use case driven, architecture-centric, iterative and

incremental” software process.

 The Unified Process is an attempt to draw on the best features and characteristics of

traditional software process models.

 The Unified Process recognizes the importance of customer communication and

streamlined methods for describing the customer’s view of a system.

 It emphasizes the important role of software architecture and “helps the architect

focus on the right goals.

 It suggests a process flow that is iterative and incremental.

 During the early 1990s James Rumbaugh, Grady Booch, and Ivar Jacobson began

working on a “unified method”.

 The result was UML—a unified modeling language that contains a robust notation

for the modeling and development of object-oriented systems.

 UML is used to represent both requirements and design models.

 UML provided the necessary technology to support object-oriented software

engineering practice, but it did not provide the process framework.

 Over the next few years, Jacobson, Rumbaugh, and Booch developed the Unified

Process, a framework for object-oriented software engineering using UML.

 Today, the Unified Process (UP) and UML are widely used on object-oriented

projects of all kinds.

 The iterative, incremental model proposed by the UP can and should be adapted to

meet specific project needs.

9.1 Phases of the Unified Process

 The above figure represents the different phases in Unified Process.

 The inception phase of the UP includes both customer communication and
planning activities.

o By collaborating with stakeholders, business requirements for the software are
identified;

o a rough architecture for the system is proposed; and

o a plan for the iterative, incremental nature of the ensuing project is developed.

o Fundamental business requirements are described.

o The architecture will be developed.
o Planning identifies resources, reviews major risks, defines a schedule,

and establishes a basis for the phases.

 The elaboration phase includes the communication and modeling activities of the
generic process model.

o Elaboration refines and expands the preliminary use cases that were developed
as part of the inception phase and expands the architectural representation to
include five different views of the software—the use case model, the
requirements model, the design model, the implementation model, and the
deployment model.

o In some cases, elaboration creates an “executable architectural baseline” that
represents a “first cut” executable system.

o The architectural baseline demonstrates the viability of the architecture but
does not provide all features and functions required to use the system.

o In addition, the plan is carefully reviewed.

o Modifications to the plan are often made at this time.

 The construction phase of the UP is identical to the construction activity defined for

the generic software process. Using the architectural model as input, the construction

phase develops or acquires the software components that will make each use case

operational for end users.

o The elaboration phase reflect the final version of the software increment.

o All necessary and required features and functions for the software increment
are then implemented in source code.

o As components are being implemented, unit tests are designed and executed
for each.

o In addition, integration activities are conducted.
o Use cases are used to derive a suite of acceptance tests that are executed prior

to the initiation of the next UP phase.

 The transition phase of the UP encompasses the latter stages of the generic

construction activity and the first part of the generic deployment (delivery and

feedback) activity.

o Software is given to end users for beta testing and user feedback reports both
defects and necessary changes.

o In addition, the software team creates the necessary support information (e.g.,
user manuals, troubleshooting guides, installation procedures) that is required
for the release.

o At the conclusion of the transition phase, the software increment becomes a
usable software release.

 The production phase of the UP coincides with the deployment activity of the generic
process.

o During this phase, the ongoing use of the software is monitored, support for
the operating environment (infrastructure) is provided, and defect reports and
requests for changes are submitted and evaluated.

o It is likely that at the same time the construction, transition, and production
phases are being conducted.

o Work may have already begun on the next software increment.
o This means that the five UP phases do not occur in a sequence, but rather with

staggered concurrency.

 A software engineering workflow is distributed across all UP phases.

 In the context of UP, a workflow is a task set

 That is, a workflow identifies the tasks required to accomplish an important software

engineering action and the work products that are produced as a consequence of

successfully completing the tasks.

 It should be noted that not every task identified for a UP workflow is conducted for
every software project.

 The team adapts the process (actions, tasks, subtasks, and work products) to meet its
needs.

10. PERSONAL AND TEAM PROCESS MODELS

 Software process model has been developed at a corporate or organizational level.

 It can be effective only if it is helpful to significant adaptation to meet the needs of the
project team that is actually doing software engineering work.

 In an ideal setting, it creates a process that best fits the customer needs, and at the

same time, meets the broader needs of the team and the organization.

 Alternatively, the team itself can create its own process, and at the same time meet the

narrower needs of individuals and the broader needs of the organization.

 It is possible to create a “personal software process” and/or a “team software
process.”

 Both require hard work, training, and coordination, but both are achievable.

10.1 Personal Software Process (PSP)

 Every developer uses some process to build computer software.

 The process may be temporary; may change on a daily basis; may not be efficient,
effective, or even successful; but a “process” does exist.

 Personal process, an individual must move through four phases, each requiring
training and careful instrumentation.

 The Personal Software Process (PSP) highlights personal measurement of both the
work product that is produced and the resultant quality of the work product.

 In addition PSP makes the practitioner responsible for project planning (e.g.,

estimating and scheduling) and empowers the practitioner to control the quality of all

software work products that are developed.

 The PSP model defines five framework activities:

1. Planning. This activity isolates requirements and develops both size and resource

estimates. In addition, a defect estimates (the number of defects projected for the

work) is made. All metrics are recorded on worksheets or templates. Finally,

development tasks are identified and a project schedule is created.

2. High-level design. External specifications for each component to be constructed

are developed and a component design is created. Prototypes are built when

uncertainty exists. All issues are recorded and tracked.

3. High-level design review. Formal verification methods are applied to uncover

errors in the design. Metrics are maintained for all important tasks and work results.

4. Development. The component-level design is refined and reviewed. Code is

generated, reviewed, compiled, and tested. Metrics are maintained for all important

tasks and work results.

5. Postmortem. Using the measures and metrics collected, the effectiveness of the

process is determined. Measures and metrics should provide guidance for modifying

the process to improve its effectiveness.

 PSP stresses the need to identify errors early and, just as important, to understand the

types of errors that you are likely to make. This is accomplished through a rigorous
assessment activity performed on all work products you produce.

 PSP represents a disciplined, metrics-based approach to software engineers, the

resulting improvement in software engineering productivity and software quality are

significant.

 However, PSP has not been widely implemented throughout the industry. The reasons,

sadly, have more to do with human nature and organizational inertia than they do with
the strengths and weaknesses of the PSP approach.

 PSP is intellectually challenging and demands a level of commitment (by practitioners
and their managers) that is not always possible to obtain. Training is relatively lengthy,

and training costs are high.

10.2.Team Software Process (TSP)

 Team Software Process (TSP) builds a “self-directed” project team that organizes

itself to produce high-quality software.

 Build self-directed teams that plan and track their work, establish goals, and own their

processes and plans. These can be pure software teams or integrated product teams

(IPTs) of 3 to about 20 engineers.

 Show managers how to coach and motivate their teams and how to help them sustain

peak performance.

 Accelerate software process improvement by making CMM Level 5 behavior normal
and expected.

 Provide improvement guidance to high-maturity organizations.

 Facilitate university teaching of industrial-grade team skills.

 A self-directed team has a consistent understanding of its overall goals and objectives;

defines roles and responsibilities for each team member; tracks quantitative project

data (about productivity and quality);

 TSP identifies a team process that is appropriate for the project and a strategy for
implementing the process;

 TSP defines local standards that are applicable to the team’s software engineering

work; continually assesses risk and reacts to it; and tracks, manages, and reports

project status.

 TSP defines the following framework activities:

o project launch,

o high-level design,

o implementation,

o integration and test, and

o postmortem.

 These activities enable the team to plan, design, and construct software in a

disciplined manner while at the same time quantitatively measuring the process and

the product.

 The postmortem sets the stage for process improvements.

 TSP makes use of a wide variety of scripts, forms, and standards that serve to guide
team members in their work.

 TSP recognizes that the best software teams are self-directed.

 Team members set

o project objectives,

o adapt the process to meet their needs,

o control the project schedule, and

o analysis of the metrics collected,

o work continually to improve the team’s approach to software engineering.

 Like PSP, TSP is a exact approach to software engineering that provides distinct
and quantifiable benefits in productivity and quality.

 The team must make a full commitment to the process and must undergo thorough
training to ensure that the approach is properly applied.

UNIT-II

Software requirements

 Objectives:

 The objectives of this chapter are to introduce software system requirements and to explain

different ways of expressing software requirements. We will learn:

■ understand the concepts of user requirements and system requirements and why these

requirements should be written in different ways;

■ understand the differences between functional and non-functional software requirements;

■ understand how requirements may be organized in a software requirements document.

 Contents are:

 1. Functional and non-functional requirements

2. User requirements

3. System requirements

4. Interface specifications

5. The software requirements document

The requirements:

 The requirements for a system are the descriptions or statements of the services provided by

the system and its operational constraints.

 These requirements reflect the needs of customers for a system that helps solve some

problem such as controlling a device, placing an order or finding information.

 IEEE defines Requirement as:

1. A condition or capability or descriptions or statements or wants needed by a user to solve a

problem or

achieve an objective.

2. The process of establishing the services that the customer requires from a system
and the constraints under which it operates and is developed

3. A condition or capability that must be met or overcome by a system or a system component to

satisfy

Contract (agreement), standard(regular), specification (condition) or formally(officially) imposed

document

4. A documented representation of a condition or capability

Requirements engineering:

• The process of finding out, analyzing documenting and checking these services and constraints

is called requirement engineering.

The process of finding out, analyzing, documenting and checking these services and constraints is

called requirements engineering (RE).

Software requirements are necessary

 To describe functional and non-functional requirements or domain requirements.
 To introduce the concepts of user and system requirements

 To explain how software requirements may be organized in a requirements
document

1. FUNCTIONAL REQUIREMENTS:

• These are the statements of services the system should provide, how the system
should react to particular inputs and, how the system should behave in
particular situations.

• Functional requirements should describe all the required functionality or system
services.

• Functional requirements describe system services or functions or Functionality
or services that the system is expected to provide.

• These are the requirements that the end user specifically demands as basic facilities
that the system should offer.

 The functional requirements describe the behavior of the system. It describes
functionality or system services.

 It describes the functions of the software or system that must perform.
 A function is nothing but inputs, its behavior, and outputs. It can be a calculation,

data manipulation, business process, user interaction, or any other specific
functionality which defines what function a system is likely to perform.

 Depend on the type of software, expected users and the type of system where the
software is used.

 Functional user requirements may be high-level statements of what the
system should do and it should also describe the system services in detail.

The functional requirements for The LIBSYS system:

 A library system that provides a single interface to a number of
databases of articles in different libraries.

 Users can search a student details such as name, how many books taken, how many
books due, address, branch and section using roll number.

Requirements imprecision (ambiguity)

 Problems arise when requirements are not precisely (accurately or correctly)
stated.

 Ambiguous (confusing) requirements may be interpreted in different ways by
developers and users.

Requirements completeness and consistency:

In principle, requirements should be both complete and consistent.

Completeness:

 They should include descriptions of all facilities

required.

Consistency:

 There should be no conflicts or contradictions in the descriptions

of the system facilities. In practice, it is impossible to produce a

complete and consistent requirements document.

2. NON-FUNCTIONAL REQUIREMENTS

 The non functional requirements define system properties and constraints.

 These are basically the quality constraints that the system must satisfy according
to the project contract. These are also called non-behavioral requirements.

 Non-functional requirements is a constraint on the system or on the
development process

 Non-functional requirements specify the software's quality attribute. These are the
Constraints on the services or functions offered by the system such as timing
constraints, constraints on the development process, standards, etc.

 These define system properties and constraints e.g. reliability, response time and
storage requirements. Constraints are I/O device capability, system representations,
etc.

 Non-functional requirements ensure that the software system must follow the
legal and adherence rules. The impact of the non-functional requirements is not on
the functionality of the system, but they impact how it will perform. For a well-
performing product, at least some of the non-functional requirements should be
met.

 Process requirements may also be specified mandating a particular CASE system,
programming language or development method.

 Non-functional requirements may be more critical than functional requirements. If
these are not met, the system is useless.

Non-functional requirement types:

The types of non-functional requirements are:

a. Product requirements: These requirements specify product behaviour.

-- Examples include performance requirements on how fast (speed) the system must

execute and how much memory (size) it requires; and also others such as, reliability

(Mean time to failure) requirements that set out the acceptable failure rate; portability

requirements; Robustness (Time to restart after failure) and usability (ease of use)

requirements.

 b. Organizational requirements These requirements are derived from policies and

procedures in the customer’s and developer’s organisation.

-- Examples include process standards that must be used; implementation requirements such

as the programming language or design method used; and delivery requirements that specify

when the product and its documentation are to be delivered.

c. External requirements: This broad heading covers all requirements that are derived

from factors external to the system and its development process.

--Examples include interoperability requirements that define how the system interacts with

systems in other organisations; legislative (law) requirements that must be followed to ensure

that the system operates within the law; and Ethical (moral) requirements are requirements placed

on a system to ensure that it will be acceptable to its users and the general public.

3. Domain requirements:

 Domain requirements are expectations related to a particular type of software,
purpose or industry.

 These are requirements that come from the application domain of the system and
that reflect characteristics and constraints of that domain.

 They may be functional or non-functional requirements.

 Domain (area) requirements are the requirements which are characteristic of a
particular category or domain of the projects.

 For example, in academic software that maintains records of a school or college, the
functionality of being able to access the list of faculty and list of students of each
branch is a domain requirement. These requirements are therefore identified from
that domain model and are not user specific.

Differences between Functional and Non-functional requirements:

Functional Requirements Non-functional requirements

Functional requirements help to understand
the functions of the system.

They help to understand the system's performance.

Functional requirements are mandatory. While non-functional requirements are not mandatory.

They are easy to define. They are hard to define.

They describe what the product does. They describe the working of product.

It specifies “What should the software system
do?”

It places constraints on “How should the software
system fulfill the functional requirements?”

It concentrates on the user's requirement. It concentrates on the expectation and experience of
the user.

Helps to verify the functionality of the
software.

Helps to verify the performance of the software.

These requirements are specified by the user. Non-functional requirement is specified by technical
peoples e.g. Architect, Technical leaders and software
developers.

Functional Testing like System, Integration, End to Non-Functional Testing like Performance, Stress, Usability,

End, API testing, etc are done. Security testing, etc are done.

These requirements are important to system
operation.

These are not always the important requirements, they may
be desirable.

Completion of Functional requirements allows the
system to perform, irrespective of meeting the non-
functional requirements.

While system will not work only with non-functional
requirements.

4. USER REQUIREMENTS
 User requirements are statements, in a natural language plus diagrams, of what

services the system is expected to provide and the constraints under which it
must operate.

 User requirements should describe functional and non-functional requirements
in such a way that they are understandable by system users who don’t have
detailed technical knowledge.

 User requirements are defined using natural language, tables and diagrams as
these can be understood by all users.

 A user requirement refers to a function or functionality that the user requires a
system to perform.

 Made through statements in natural language and diagrams of the services the
system provides and its operational constraints. Written for customers.

 User requirements are set by client and confirmed before system development.
– For example, in a system for a bank the user may require a function to
calculate interest over a set time period.

Problems with natural language

Lack of clarity:

 It is sometimes difficult to use language in a precise (accuracy) and
unambiguous way without making the document wordy and difficult to
read.

Requirements confusion:
• Functional and non-functional requirements, system goals and design

information may not be clearly distinguished(defined).
Requirements amalgamation (merging):

• Several different requirements may be expressed together as a single
requirement.

5. SYSTEM REQUIREMENTS

 System requirements set out the system’s functions, services and operational
constraints in detail. The system requirements document (sometimes called a
functional specification) should be defined.

 It should define exactly what is to be implemented. It may be part of the contract
between the system buyer and the software developers.

 System requirements are expanded versions of the user requirements that are
used by software engineers as the starting point for the system design.

 They add detail and explain how the user requirements should be provided by the
system.

 A system requirement is a more technical requirement, often relating to hardware
or software required for a system or software to perform function properly.

 System requirements are more commonly used by developers throughout the
development life cycle.

 The system requirements should simply describe the external behaviour of the
system and its operational constraints. These are more detailed specifications (or
conditions) of system functions, services and constraints than user requirements.

 They should not be concerned with how the system should be designed or
implemented.

 The client will usually have less interest in these lower level requirements.
 System requirements may also include validation requirements such as "File upload

is limited to .xls format

 They are intended to be a basis for designing the system.

 Natural language is often used to write system requirements specifications as well
as user requirements. However, because system requirements are more detailed
than user requirements, natural language specifications can be confusing and hard
to understand

 System requirements may be defined or illustrated using system models

6. INTERFACE SPECIFICATION

a. Most systems must operate with other systems and the operating

interfaces must be specified as part of the requirements.
b. Three types of interface may have to be defined

i. Procedural interfaces where existing programs or sub-
systems offer a range of services that are accessed by calling
interface procedures. These interfaces are sometimes called
Application Programming Interfaces (APIs)

ii. Data structures that are exchanged that are passed
from one sub-system to another. Graphical data models
are the best notations for this type of description

iii. Data representations that have been established for an existing sub-
system

c. Formal notations are an effective technique for interface specification.

7. THE SOFTWARE REQUIREMENTS DOCUMENT:

a. The software requirements document (sometimes called the software
requirements specification or SRS) is the official statement of what the system
developers should implement.

b. It should include both the user requirements for a system and a detailed
specification of the system requirements.

c. Should provide for communication among team members
d. Should act as an information repository to be used by maintenance engineers
e. Should provide enough information to management to allow them to perform

all program management related activities

f. Should describe to users how to operate and administer the system
g. Specify external system behavior
h. Specify implementation constraints
i. Easy to change, modify and serve as reference tool for maintenance
j. Record forethought about the life cycle of the system i.e. predict changes
k. Characterise responses to unexpected events
l. It is NOT a design document. As far as possible, it should set of WHAT the system

should do rather than HOW it should do it

Users of a requirements document:

IEEE requirements standard defines a generic structure for a requirements document that
must be instantiated for each specific system.

1. Introduction.
i) Purpose of the requirements document
ii) Scope of the project
iii) Definitions, acronyms and abbreviations
iv) References
v) Overview of the remainder of the document

2. General description.
i) Product perspective
ii) Product functions
iii) User characteristics
iv) General constraints
v) Assumptions and dependencies

3. Specific requirements cover functional, non-functional and interface
requirements. The requirements may document external interfaces,
describe system functionality and performance, specify logical
database requirements, design constraints, emergent system
properties and quality characteristics.

4. Appendices.
5. Index.

Requirements Engineering Processes (REP):

• Requirement engineering is the process of establishing the services that the
customer requires from a system and the constraints under which it operates
and is developed.

• REP helps software engineers to better understand the problem to solve.

• It is carried out by software engineers (analysts) and other project stakeholders

• It is important to understand what the customer wants before one begins to
design and build a computer based system

• REP is a systems and software engineering process which covers all of the activities
involved in discovering, documenting and maintaining a set of requirements for a
computer-based system.

• The processes used for RE vary widely depending on the application domain, the
people involved and the organization developing the requirements.

Activities within the RE process may include:
– Assessing(or evaluating or judging) whether the system is useful to the

business(feasibility study)

– Requirements elicitation - discovering requirements from system stakeholders

– Requirements Analysis and negotiation - checking requirements and

resolving stakeholder conflicts

– Requirements specification (Software Requirements Specification)-

documenting the requirements in a requirements document

– System modeling - deriving models of the system, often using a notation

such as the Unified Modeling Language

– Requirements validation - checking that the documented requirements

and models are consistent and meet stakeholder needs

– Requirements management - managing changes to the requirements as

the system is developed and put into use

Requirements Engineering Processes:

Spiral model of requirements engineering processes

1. Feasibility studies

A feasibility study decides whether or not the proposed system is worthwhile or useful or
valuable. The objective behind the feasibility study is to create the reasons for developing the
software that is acceptable to users, flexible to change and conformable to established
standards.

Types of Feasibility:

1. Technical Feasibility - Technical feasibility evaluates the current technologies, which are needed to

accomplish customer requirements within the time and budget.

2. Operational Feasibility - Operational feasibility assesses the range in which the required software

performs a series of levels to solve business problems and customer requirements.

3. Economic Feasibility - Economic feasibility decides whether the necessary software can generate

financial profits for an organization.

• The purpose of feasibility study is not to solve the problem, but to determine

whether the problem is worth solving.

• A short focused study that checks

– If the system contributes to organisational objectives;

– If the system can be engineered using current technology and within budget;

– If the system can be integrated with other systems that are used.

Based on information assessment (what is required), information collection and report
writing.

• Questions for people in the organisation

– What if the system wasn‘t implemented?

– What are current process problems?

– How will the proposed system help?

– What will be the integration problems?

– Is new technology needed? What skills?

– What facilities must be supported by the proposed system?

2. Requirement Elicitation and Analysis: Requirement discovery, Interviewing,

Requirements analysis in systems engineering and software engineering, includes those
tasks that go into determining the needs or conditions to meet for a new or altered
product, taking account of the possibly conflicting requirements of the various
stakeholders, such as beneficiaries or users.

Requirements analysis is critical to the success of a systems or software project. The
requirements should be documented, actionable, measurable, testable, traceable, related
to identified business needs or opportunities, and defined to a level of detail sufficient for
system design.

Requirements analysis includes three types of activities

– Eliciting requirements: The task of identifying the various types of
requirements from various sources including project documentation, (e.g.
the project charter or definition), business process documentation, and
stakeholder interviews. This is sometimes also called requirements
gathering.

– Analyzing requirements: determining whether the stated requirements are
clear, complete, consistent and unambiguous, and resolving any apparent
conflicts.

– Recording requirements: Requirements may be documented in various

forms, usually including a summary list and may include natural-language
documents, use cases, user stories, or process specifications.

Problems of Requirements Analysis

• Stakeholders don‘t know what they really want.
• Stakeholders express requirements in their own terms.
• Different stakeholders may have conflicting requirements.
• Organisational and political factors may influence the system requirements.
• The requirements change during the analysis process. New stakeholders may

emerge and the business environment change.

Requirements elicitation is the practice of collecting the requirements of a system from
users, customers and other stakeholders. Sometimes called Requirements Discovery
Requirements elicitation is important because one can never be sure to get all
requirements from the user and customer by just asking them what the system should do
Requirements elicitation practices include interviews, questionnaires, user observation,
workshops, brain storming, use cases, role playing and prototyping. Before requirements
can be analyzed, modeled, or specified they must be gathered through an elicitation
process. Requirements elicitation is a part of the requirements engineering process,
usually followed by analysis and specification of the requirements.

Requirements Analysis Process activities

• Requirements discovery
– Interacting with stakeholders to discover their requirements. Domain

requirements are also discovered at this stage.
• Requirements classification and organisation

– Groups related requirements and organises them into consistent clusters.
• Prioritization and negotiation

– Prioritizing requirements and resolving requirements conflicts.
• Requirements documentation

– Requirements are documented and input into the next round of the spiral.

Requirements discovery

• The process of gathering information about the proposed and existing systems
and distilling (complete separation) the user and system requirements from this
information.

• Sources of information include documentation, system stakeholders and the
specifications of similar systems.

Stakeholder Identification

– Stakeholders (SH) are people or organizations (legal entities such as companies,
standards bodies) that have a valid interest in the system. They may be affected by
it either directly or indirectly.

– Stakeholders are not limited to the organization employing the analyst. Other

stakeholders will include:

• Anyone who operates the system (normal and maintenance operators)
• Anyone who benefits from the system (functional, political, financial and

social beneficiaries)

Other stakeholders will include:

• Anyone involved in purchasing or procuring the system. In a mass-market
product organization, product management, marketing and sometimes
sales act as surrogate consumers (mass-market customers) to guide
development of the product

• Organizations which regulate aspects of the system (financial, safety, and
other regulators)

• People or organizations opposed to the system (negative stakeholders
• Organizations responsible for systems which interface with the system under

design

Requirements Discovery Techniques:
1. Viewpoints:

• Key strength of viewpoint-oriented analysis is that it recognizes multiple

perspectives and provides a framework for discovering conflicts in the

requirements proposed by different stakeholders.

• Viewpoints are a way of structuring the requirements to represent the

perspectives of different stakeholders. Stakeholders may be classified under

different viewpoints.

• This multi-perspective analysis is important as there is no single correct way to
analyze system requirements.

• Types of viewpoint
– Interactor viewpoints

• People or other systems that interact directly with the system. In an
ATM, the customers and the account database are interactor VPs.

– Indirect viewpoints
• Stakeholders who do not use the system themselves but who

influence the requirements. In an ATM, management and security
staff are indirect viewpoints.

– Domain viewpoints
• Domain characteristics and constraints that influence the

requirements. In an ATM, an example would be standards for inter-
bank communications.

2.Interviewing

• The interview is the primary technique for information gathering during the
systems analysis phases of a development project. It is a skill which must be
mastered by every analyst.

• The interviewing skills of the analyst determine what information is gathered, and
the quality and depth of that information. Interviewing, observation, and research
are the primary tools of the analyst.

• In formal or informal interviewing, the RE team puts questions to stakeholders
about the system that they use and the system to be developed.

• Interviews are good for getting an overall understanding of what stakeholders do
and how they might interact with the system.

Goals of the Interview

– At each level, each phase, and with each interviewee, an interview may be conducted
to:

• Gather information on the company

• Gather information on the function

• Gather information on processes or activities

• Uncover problems

• Conduct a needs determination

• Verification of previously gathered facts

• Gather opinions or viewpoints

• Provide information

• Obtain leads for further interviews

Interviews are two types:

– Closed interviews where a pre-defined set of questions are answered.

– Open interviews where there is no pre-defined agenda and a range of
issues are explored with stakeholders.

• Normally a mix of closed and open-ended interviewing is undertaken.

• Interviews are not good for understanding domain requirements

– Requirements engineers cannot understand specific domain terminology;

– Some domain knowledge is so familiar that people find it hard to articulate
or think that it isn‘t worth articulating.

• Effective Interviewers

– Interviewers should be open-minded, willing to listen to stakeholders and
should not have pre-conceived ideas about the requirements.

– They should prompt the interviewee with a question or a proposal and
should not simply expect them to respond to a question such as what do
you want‘.

• Information from interviews supplement other information about the system
from documents, user observations, and so on

• Sometimes, apart from information from documents, interviews may be the only
source of information about the system requirements

• It should be used alongside other requirements elicitation techniques

3. Scenarios, Use cases, Ethnography:

1. Scenarios:

• Scenarios are real-life examples of how a system can be used.
• Scenarios can be particularly useful for adding detail to an outline

requirements description.
• Each scenario covers one or more possible interactions
• Several forms of scenarios can be developed, each of which provides

different types of information at different levels of detail about the system
• Scenarios may be written as text, supplemented by diagrams, screen shots and so on.
• A scenario may include

– A description of the starting situation;
– A description of the normal flow of events;
– A description of what can go wrong;
– Information about other concurrent activities that might be going on at

the same time
– A description of the system state when the scenario finishes.

Scenario-based elicitation involves working with stakeholders to identify scenarios and to
capture details to be included in these scenarios. Scenarios may be written as text,
supplemented by diagrams, screen shots, etc. Alternatively, a more structured approach
such as event scenarios or use cases may be used.

2. Use Cases

• Use-cases are a scenario based technique in the UML which identify the actors in an
interaction and which describe the interaction itself.

• A set of use cases should describe all possible interactions with the system.
• Sequence diagrams may be used to add detail to use-cases by showing the sequence

of event processing in the system.
• Use-case approach helps with requirements prioritization

A Use case can have high priority for

– It describes one of the business process that the system enables
– Many users will use it frequently
– A favored user class requested it
– It provides capability that‘s required for regularity compliance
– Other system functions depend on its presence

3. Ethnography

• Ethnography is an observational technique that can be used to understand social
and organizational requirements. Ethnography means is a comparative study of
people.

• Requirements obtained from working style of people.
• Requirements obtained from inter-actives performed by the people i.e.,

gathering the requirements based on the people’s activites.

• Scientists spend a considerable time observing and analyzing how people actually work.

• People do not have to explain their work.
• Social and organizational factors of importance may be observed.
• Ethnographic studies have shown that work is usually richer and more

complex than suggested by simple system models.
Ethnography is particularly effective at discovering two types of requirements:

1. Requirements that are derived from the way in which people actually work rather than
the way in which process definitions say they have to to work.

2. Requirements that are derived from cooperation and awareness of other people’s
activities.
Focused ethnography

• Combines ethnography with prototyping

• Prototype development results in unanswered questions which focus the

ethnographic analysis.

• The problem with ethnography is that it studies existing practices which may
have some historical basis which is no longer relevant.

Ethnography and prototyping

The ethnography informs the development of the prototype so that fewer prototype
refinement cycles are required. Furthermore, the prototyping focuses the ethnography by
identifying problems and questions that can then be discussed with the ethnographer.

3. Software Requirement Specification:

Software requirement specification is a kind of document which is created by a
software analyst after the requirements collected from the various sources - the
requirement received by the customer written in ordinary language. It is the job of the
analyst to write the requirement in technical language so that they can be understood
and beneficial by the development team.

The models used at this stage include ER diagrams, data flow diagrams (DFDs), function
decomposition diagrams (FDDs), data dictionaries, etc.

o Data Flow Diagrams: Data Flow Diagrams (DFDs) are used widely for modeling the

requirements. DFD shows the flow of data through a system. The system may be a

company, an organization, a set of procedures, a computer hardware system, a

software system, or any combination of the preceding. The DFD is also known as a data

flow graph or bubble chart.

o Data Dictionaries: Data Dictionaries are simply repositories to store information

about all data items defined in DFDs. At the requirements stage, the data dictionary

should at least define customer data items, to ensure that the customer and

developers use the same definition and terminologies.

Entity-Relationship Diagrams: Another tool for requirement specification is the entity-
relationship diagram, often called an "E-R diagram." It is a detailed logical

representation of the data for the organization and uses three main constructs i.e. data
entities, relationships, and their associated attributes

Software requirement specification is a kind of document which is created by a
software analyst after the requirements collected from the various sources - the
requirement received by the customer written in ordinary language. It is the job of the
analyst to write the requirement in technical language so that they can be understood
and beneficial by the development team.

Structured natural language (Structured language specifications)

 It is a way of writing the system requirements where the freedom of the
requirements writer is limited and all requirements are written in a standard way. .

 The advantage of this approach is that it maintains most of the expressiveness and
understandability of natural language but ensures that some degree of uniformity
is imposed on the specification.

 A detailed software description which can serve as a basis for a design or
implementation. It is written for developers.

System requirement specification(SRS) using a standard form:

1. Function
2. Description
3. Inputs
4. Source
5. Outputs
6. Destination
7. Action
8. Requires
9. Pre-condition
10. Post-condition
11. Side-effects

4. Requirement Validation

• It is concerned with demonstrating that the requirements define the system that
the customer really wants i.e., It is a process in which it is checked that whether
the gathered requirements represent the same system that customer really wants.

• Requirements error costs are high so validation is very important
– Fixing a requirements error after delivery may cost up to 100 times the cost

of fixing an implementation error.

During the requirements validation process, different types of checks should be carried
out on the requirements in the requirements document. These checks include:

• Validity. Does the system provide the functions which best support the customer‘s
needs?

• Consistency. Are there any requirements conflicts?

• Completeness. Are all functions required by the customer included?

• Realism. Can the requirements be implemented according to given available budget
and technology?

• Verifiability: Can the requirements be checked?

Requirements Validation Techniques
• Requirements reviews

– Systematic manual analysis of the requirements.
– Regular reviews should be held while the requirements definition is being

formulated.
– Both client and contractor staff should be involved in reviews.
– Reviews may be formal (with completed documents) or informal. Good

communications between developers, customers and users can resolve
problems at an early stage.

– Don’t underestimate the problems involved in requirements validation.
Ultimately, it is difficult to show that a set of requirements does in fact
meet a user‘s needs. Users need to picture the system in operation and
imagine how that system would fit into their work.

• Prototyping
– Using an executable model of the system to check requirements.

• Test-case generation
– Developing tests for requirements to check testability.

 Verifiability. Is the requirement realistically testable?
 Comprehensibility: Is the requirement properly understood?
 Traceability: Is the origin of the requirement clearly stated?
 Adaptability: Can the requirement be changed without a large impact on

other requirements?

5. Requirement Management

Requirements management is the process of managing the changing requirements during
the requirements engineering process and system development.

Requirements are inevitably (certainty) incomplete and inconsistent

– New requirements emerge during the process as business needs change
and a better understanding of the system is developed;

– Different viewpoints have different requirements and these are often
contradictory.

Requirements Change

• The priority of requirements from different viewpoints changes during the

development process.

• System customers may specify requirements from a business perspective that

conflict with end-user requirements.

• The business and technical environment of the system changes during its

development.

Requirements Evolution

Enduring (stable or permanent) requirements

– These are relatively stable requirements that derive from the core activity of
the organization

– Relate directly to the domain of the system
– These requirements may be derived from domain models that show the entities

and relations which characterize an application domain
– For example, in a hospital there will always be requirements concerned with

patients, doctors, nurses, treatments, etc
Volatile requirements
– These are requirements that are likely to change during the system development

process or after the system have been become operational.
– Examples of volatile requirements are requirements resulting from government

health-care policies or healthcare charging mechanisms.
 Traceability

• Traceability is concerned with the relationships between requirements, their
sources and the system design

• Source traceability
– Links from requirements to stakeholders who proposed these requirements;

• Requirements traceability
– Links between dependent requirements;

• Design traceability
– Links from the requirements to the design;

• Requirements storage
– Requirements should be managed in a secure, with in a managed data store.

• Change management
– The process of change management is a workflow process whose

stages can be defined and information flow between these stages partially
automated.

• Traceability management
– Automated retrieval of the links between requirements.

Requirements Management Planning
• During the requirements engineering process, one has to plan:

– Requirements identification
• How requirements are individually identified;

– A change management process
• The process followed when analyzing a requirements change;

– Traceability policies
• The amount of information about requirements relationships

that is maintained;
– CASE tool support

• The tool support required to help manage requirements change;
• Should apply to all proposed changes to the requirements.
• Principal stages

– Problem analysis. Discuss requirements problem and propose change;
– Change analysis and costing. Assess effects of change on other requirements;
– Change implementation. Modify requirements document and other

documents to reflect change.

System models

● Modeling consists of building an abstraction of reality. Abstractions are
simplifications because: They ignore irrelevant details and they only represent
the relevant details. What is relevant or irrelevant depends on the purpose of
the model.

● System modeling is the process of developing abstract models of a system.

Each model presenting a different view or perspective of that system from

different perspectives
● System modeling helps the analyst to understand the functionality of the

system and models are used to communicate with customers

Types of System models are

1. Context models

2. Behavioral models

3. Data models

4. Object models

1. Context models
 Defines the physical scope of the system: i.e., what is part of the system (under your

control) and what is external to the system.

 It is an external perspective i.e., Model the context or environment of the system.
 Context models are used to illustrate the operational context of a system - They

show what lies outside the system boundaries.

 Context models simply show the other systems in the environment, not how the
system being developed is used in that environment.

 System boundaries are established to define what is inside and what is outside
the system.

 It shows other systems that are used or depend on the system being developed.

The context of an ATM system

 Data flow models or Activity Diagrams may be used to show the processes and the

flow of information from one process to another

Equipment procurement process

2. Behavioral Model
 Behavioral models are used to describe the overall behavior of a system.

 Behavioral Model is specially designed to make us understand behavior and factors
that influence behavior of a System.

i. Data Flow Diagrams (DFD)
 Data flow diagrams (DFDs) may be used to model the system’s data processing.

 Data flow models may be used to show the processes and the flow of information from

one process to another.

 In Software engineering DFD (data flow diagram) can be drawn to represent the system

of different levels of abstraction.

 Higher-level DFDs are partitioned into low levels-hacking more information and

functional elements.

 It is used to show how data is processed as it moves through the system.

 These show the processing steps as data flows through a system.

 DFDs model the system from a functional perspective.

 Tracking and documenting how the data associated with a process is

helpful to develop an overall understanding of the system.

 Data flow diagrams may also be used in showing the data exchange between a system

and other systems in its environment.

Insulin pump DFD

Levels in DFD
Levels in DFD are numbered 0, 1, 2 or beyond. Here, we will see mainly 3 levels in the data flow
diagram, which are: 0-level DFD, 1-level DFD, and 2-level DFD.

0-level DFD:
It is also known as a context diagram. It’s designed to be an abstraction view, showing the
system as a single process with its relationship to external entities. It represents the entire
system as a single bubble with input and output data indicated by incoming/outgoing arrows.

1-level DFD:
In 1-level DFD, the context diagram is decomposed into multiple bubbles/processes. In this
level, we highlight the main functions of the system and breakdown the high-level process of
0-level DFD into sub processes.

2-level DFD:
2-level DFD goes one step deeper into parts of 1-level DFD. It can be used to plan or record the
specific/necessary detail about the system’s functioning.

ii. State Transition Diagram or state chart or state machine diagram
 Behavior of a system is explained and represented with the help of a diagram.

 This diagram is known as State Transition Diagram or state chart or state machine
diagram. It is a collection of states and events.

 It usually describes overall states that a system can have and events which are
responsible for a change in state of a system.

 It models the behaviour of the system in response to external and internal events.

 They show the system’s responses to stimulus (incentive or motivate) so are often
used for modeling real-time systems.

 State machine models show system states as nodes and events as arcs between these

nodes. When an event occurs, the system moves from one state to another.

 State charts are an integral part of the UML and are used to represent state machine

models.

 So, on some occurrence of a particular event, an action is taken and what action needs
to be taken is represented by State Transition Diagram.

 Behavioral perspective - Model the dynamic behavior of the system and how it responds
to events - Behavioral models, State machine models

 Allow the decomposition of a model into sub- models (see following slide).

 A brief description of the actions is included following the ‘do’ in each state.

 Can be complemented by tables describing the states and the stimuli.

Example-1:Microwave oven model

Microwave oven state description

State

Waiting

Half power

Full power

Set time

Disabled

Enabled

Operation

Description

The oven is waiting for input. The display shows the current time. The oven

power is set to 300 watts. The display shows ‘Half power’. The oven power is

set to 600 watts. The display shows ‘Full power’.

The cooking time is set to the user’s input value. The display shows the cooking time selected

and is updated as the time is set.

Oven operation is disabled for safety. Interior oven light is on. Display shows ‘Not ready’.

Oven operation is enabled. Interior oven light is off. Display shows ‘Ready to cook’.

Oven in operation. Interior oven light is on. Display shows the timer countdown. On completion of

cooking, the buzzer is sounded for 5 s econds. Oven light is on. Display shows ‘Cooking complete’

while buzzer is sounding.

Microwave oven stimulus (motivation)

Stimulus

Half power

Full power

Timer

Number

Door open

Door closed

Start

Cancel

Description

The user has pressed the half power button

The user has pressed the full power button

The user has pressed one of the timer buttons

The user has pressed a numeric key

The oven door switch is not closed

The oven door switch is closed

The user has pressed the start button

The user has pressed the cancel button

Microwave oven operation

Example2:
Consider an Elevator. This elevator is for n number of floors and has n number of buttons one
for each floor.

Elevator’s working can be explained as follows:

1. Elevator buttons are type of set of buttons which is there on elevator. For reaching a
particular floor you want to visit, “elevator buttons” for that particular floor is pressed.
Pressing, will cause illumination and elevator will start moving towards that particular
floor for which you pressed “elevator buttons”. As soon as elevator reaches that particular
floor,
illumination gets canceled.

2. Floor buttons are another type of set of buttons on elevator. If a person is on a particular
floor and he wants to go on another floor, then elevator button for that floor is pressed.

Then, process will be same as given above. Pressing, will cause illumination and elevator to
start moving, and when it reaches on desired floor, illumination gets canceled.

3. When there is no request for elevator, it remains closed on current floor.
State Transition Diagram for an elevator system is shown below –

Advantages :
 Behavior and working of a system can easily be understood without any effort.
 Results are more accurate by using this model.
 This model requires less cost for development as cost of resources can be minimal.
 It focuses on behavior of a system rather than theories.
Disadvantages :
 This model does not have any theory, so trainee is not able to fully understand basic

principle and major concept of modeling.
 This modeling cannot be fully automated.
 Sometimes, it’s not easy to understand overall result.
 Does not achieve maximum productivity due to some technical issues or any errors.

3.Data Models

Data Modeling in software engineering is the process of simplifying the diagram or data model
of a software system by applying certain formal techniques. It involves expressing data and
information through text and symbols. The data model provides the blueprint for building a
new database or reengineering legacy applications.

i. Semantic data models

 Used to describe the logical structure of data processed by the system.

 An entity-relation-attribute model sets out the entities in the system, the

relationships between these entities and the entity attributes

 Widely used in database design. Can readily be implemented using

relational databases.

 No specific notation provided in the UML but objects and associations can be

used.

Library semantic model

Data dictionaries

 Data dictionaries are lists of all of the names used in the system models.

Descriptions of the entities, relationships and attributes are also included.

 Advantages

• Support name management and avoid duplication;

• Store of organisational knowledge linking analysis, design and

implementation;

4. Object Models
 Object models describe the system in terms of object classes and their associations.

 An object class is an abstraction over a set of objects with common attributes and the

services (operations) provided by each object.
 Natural ways of reflecting the real-world entities manipulated by the system
 More abstract entities are more difficult to model using this approach
 Object class identification is recognized as a difficult process requiring a deep

understanding of the application domain
 Object classes reflecting domain entities are reusable across systems
 Various object models may be produced

• Inheritance models

• Aggregation models

• Object behavior models or Interaction models

i. Inheritance models

 Organize the domain object classes into a hierarchy.

 Classes at the top of the hierarchy reflect the common features of all classes.

 Object classes inherit their attributes and services from one or more super-

classes. These may then be specialized as necessary.

 Class hierarchy design can be a difficult process if duplication in different

branches is to be avoided.

 Object models and the UML

 The UML is a standard representation devised by the developers of
widely used object-oriented analysis and design methods.

 It has become an effective standard for object- oriented modeling.

 Notation

• Object classes are rectangles with the name at the top, attributes in the
middle section and operations in the bottom section;

• Relationships between object classes (known as associations) are shown
as lines linking objects;

• Inheritance is referred to as generalization and is shown ‘upwards’ rather
than ‘downwards’ in a hierarchy.

ii.Object Aggregation:

iii. Object behavior modelling:

III -UNIT

Design Process , Design Quality and Design Principles:

Design Concepts:

Design Models:

Unified Modeling Language(UML):

Unified Modeling Language (UML) is a graphical language, used in object-

oriented development that includes a several types of system model and

provides different views of a system.

Unified Modeling Language (UML) is a standardized modeling language. It

helps software developers visualize, construct, and document new software

systems and blueprints.

UML is a visual modeling language. “A picture is worth a thousand words.”

UML is a standard language for software blueprints.”

UML combined the best from object-oriented software modeling methodologies

that were in existence during the early 1990’s. – Grady Booch, James

Rumbaugh, and Ivor Jacobson are the primary contributors to UML.

1. Model:

A model is a simplification of reality.

It is a representation of a subject or objects.

It captures a set of ideas (known as abstractions or concepts) about its

 subject.

We build models so that we can better understand the system we are

 developing.

Through modeling, we achieve four aims

1. Models help us to visualize a system as it is or as we want it to be.

2. Models permit us to specify the structure or behavior of a system.

3. Models give us a template that guides us in constructing a system.

4. Models document the decisions we have made.

2. Unified:

It is to bring together the information systems and technology industry’s best

engineering practices.

These practices involve applying techniques that allow us to successfully

develop systems.

3. Language:

It enables us to communicate about a subject which includes the

requirements and the system.

It is difficult to communicate and collaborate for a team to successfully

develop a system without a language.

Usages of UML:

UML is used to:

i. UML is a language for documenting design – Provides a record of what

 has been built. – Useful for bringing new programmers up to speed.

ii. Represent different views/aspects of design – visualize and construct

 designs -----static / dynamic / deployment / modular aspect.

iii. Provide a next-to-precise, common, language –specify visually

iv. To present a simplified view of reality in order to facilitate the design and

 implementation of object-oriented software systems

A Conceptual Model of UML:

 A conceptual model of the language underlines the three major elements:

• The Building Blocks

• The Rules

• Some Common Mechanisms

I). Building blocks of UML (Conceptual model of UML)

These are the fundamental elements in UML. Every diagram can be

represented using these building blocks. The building block of UML contains

three types of elements. They are:

1) Things (object oriented parts of uml)I

2) Relationships (relational parts of uml)

3) Diagrams

1.Things

Things are the abstractions. A diagram can be viewed as a graph containing

vertices and edges. In UML, vertices are replaced by things, and the edges are

replaced by relationships. There are four types of things in UML. They are:

a) Structural things (nouns of uml – static parts)

b) Behavioral things (verbs of uml – dynamic parts)

c) Grouping things (organizational parts)

d) Annotational things (explanatory parts)

a)Structural things

 Represents the static aspects of a software system. There are seven structural

things in UML. They are:

 Class: A class is a collection of similar objects having similar attributes,

behavior, relationships and semantics. Graphically class is represented as a

rectangle with three compartments.

 Graphical representation:

 Example:

Interface: An interface is a collection of operation signatures and/or attribute

definitions that ideally define a cohesive set of behavior. Graphically interface is

represented as a circle or a class symbol stereotyped with interface.

Use Case: A use case is a collection of actions, defining the interactions

between a role (actor) and the system. Graphically use case is represented as a

solid ellipse with its name written inside or below the ellipse.

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/class-spec.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/class-ex.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/interface-ex.gif

Graphical representation:

 Example:

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/usecase-spec.gif

Collaboration: A collaboration is the collection of interactions among objects to

achieve a goal. Graphically collaboration is represented as a dashed ellipse. A

Collaboration can be a collection of classes or other elements.

Example:

Component: A component is a physical and replaceable part of a system.

Graphically component is represented as a tabbed rectangle. Examples of

components are executable files, dll files, database tables, files and documents.

 Graphical representation:

 Example:

Node: A node is a physical element that exists at run time and represents a

computational resource. Graphically node is represented as a cube. Examples

of nodes are PCs, laptops, smart phones or any embedded system.

 Graphical representation:

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/component-spec.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/node-spec.gif

Example:

b.Behavioral Things

It represents the dynamic aspects of a software system. Behavior of a software

system can be modeled as interactions or as a sequence of state changes.

 Interaction or sequence: A behavior made up of a set of messages exchanged

among a set of objects to perform a particular task. A message is represented

as a solid arrow. Below is an example of interaction representing a phone

conversation:

State Machine: A behavior that specifies the sequences of states an object or

interaction goes through during its’ lifetime in response to events. A state is

represented as a rectangle with rounded corners. Below is an example of state

machine representing the states of a phone system:

c.Grouping Things

Elements which are used for organizing related things and relationships in

models.

Package: A general purpose mechanism for organizing elements into groups.

Graphically package is represented as a tabbed folder. When the diagrams

become large and cluttered, related are grouped into a package so that the

diagram can become less complex and easy to understand.

Graphical representation:

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/state-machine-ex.gif

Example:

d. Annotational Things

 Note: A symbol to display comments. Graphically note is represented as a

rectangle with a dog ear at the top right corner.

Graphical representation:

2. Relationships

The things in a diagram are connected through relationships. So, a relationship

is a connection between two or more things.

Dependency: A semantic relationship, in which a change in one thing (the

independent thing) may cause changes in the other thing (the dependent

thing). This relationship is also known as “using” relationship. Graphically

represented as dashed line with stick arrow head.

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/package-spec.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/package-ex.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/note-spec.gif

Graphical representation:

Example:

Association: A structural relationship describing connections between two or

more things. Graphically represented as a solid line with optional stick arrow

representing navigation.

Example:

Generalization: Is a generalization-specialization relationship. Simply put this

describes the relationship of a parent class (generalization) to its subclasses

(specializations). Also known as “is-a” relationship.

Graphical representation:

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/dependency-spec.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/dependency-ex.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/association-ex.gif

Example:

Realization: Defines a semantic relationship in which one class specifies

something that another class will perform. Example: The relationship between

an interface and the class that realizes or executes that interface.

Graphical representation and Example:

3. Diagrams

A diagram is a collection of elements often represented as a graph consisting of

vertices and edges joining these vertices. These vertices in UML are things and

the edges are relationships. UML includes nine diagrams:

1) Class diagram 2) Object diagram 3) Use case diagram 4) Component diagram

5) Deployment diagram 6) Sequence diagram 7) Collaboration diagram 8)

Statechart diagram and 9) Activity diagram.

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/generalization-spec.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/generalization-ex.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/realization-spec.gif

II. Rules (conceptual model of UML)

The rules of UML specify how the UMLs building blocks come together to

develop diagrams. The rules enable the users to create well-formed models. A

well-formed model is self-consistent and also consistent with the other models.

UML has rules for:

Names – What elements can be called as things, relationships and diagrams

Scope – The context that gives a specific meaning to a name

Visibility – How these names are seen and can be used by the other names

Integrity – How things properly relate to one another

Execution – What it means to run or simulate a model

III. Common Mechanisms in UML (conceptual model of uml)

Why UML is easy to learn and use? It’s because of the four common

mechanisms that apply throughout the UML. They are:

Specifications

Adornments

Common divisions

Extensibility mechanisms

Specifications: Behind every graphical notation in UML there is a precise

specification of the details that element represents. For example, a class icon is

a rectangle and it specifies the name, attributes and operations of the class.

Adornments: The mechanism in UML which allows the users to specify extra

information with the basic notation of an element is the adornments.

In the above example, the access specifiers: + (public), # (protected) and –

(private) represent the visibility of the attributes which is extra information over

the basic attribute representation.

Common Divisions: In UML there is clear division between semantically

related elements like: separation between a class and an object and the

separation between an interface and its implementation.

Extensibility Mechanisms

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/adornments.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/common-divisions-class-objects.gif
http://www.startertutorials.com/uml/wp-content/uploads/2013/08/common-divisions-interface-component.gif

UMLs extensibility mechanisms allow the user to extend (new additions) the

language in a controlled way. The extensibility mechanisms in UML are:

Stereotypes – Extends the vocabulary of UML. Allows users to declare new

building blocks (icons) or extend the basic notations of the existing building

blocks by stereotyping them using guillemets.

Tagged Values – Extends the properties of an UML building block. Allows us to

specify extra information in the elements specification. Represented as text

written inside braces and placed under the element name. The general syntax

of a property is:

{ property name = value }

Constraints – Extends the semantics of a UMLs building block such as

specifying new rules or modifying existing rules. Represented as text enclosed

in braces and placed adjacent or beside the element name.

Example:

In the above example, we are specifying the exception “Overflow” using the

class symbol and stereo typing it with “exception”. Also under the class name,

“EventQueue” we are specifying additional properties like “version” and

“author” using tagged values.

http://www.startertutorials.com/uml/wp-content/uploads/2013/08/extensibility-mechanisms.gif

Finally, we are constraining the operation named “add” that before adding a

new event to the EventQueue object, all the events must be “ordered” in some

manner. This is specified using constraints in UML.

IV Software Testing Strategies:

 The process of investigating and checking a program to find whether
there is an error or not, and does it fulfill the requirements or not, is

called testing.
 The main objective of software testing is to design the tests in such a way

that it systematically finds different types of errors without taking much

time and effort so that less time is required for the development of the

software.

 Testing is a set of activities that can be planned in advance and conducted

systematically.

 Software Testing is a type of investigation to find out if there is any default

or error present in the software so that the errors can be reduced or

removed to increase the quality of the software and to check whether it

fulfills the specifies requirements or not.

 Software Testing is important, because if there are any bugs or errors in

the software, it can be identified early and can be solved before delivery of

the software product.

 Properly tested software product ensures reliability, security and high

performance which further results in time saving, cost effectiveness and

customer satisfaction.

A strategic approach to software testing:

 A strategy (plan of action) for software testing provides a road map that

describes the steps to be conducted as part of testing, when these steps are

planned and then accepted, and how much effort, time, and resources will

be required.

 Any testing strategy must incorporate test planning, test case design, test

execution, and resultant data collection and evaluation.

Characteristics of good testing (or) The characteristic that process the testing

templates:

 The developer should conduct the successful technical reviews to perform
the testing successful.

 Testing starts with the component level and work from outside toward the

integration of the whole computer based system.
 Different testing techniques are suitable at different point in time.

 Testing is organized by the developer of the software and by an
independent test group.

 Debugging and testing are different activities, but debugging should be

accommodated in any strategy of testing.
 The overall strategy for testing software includes:

https://www.geeksforgeeks.org/software-testing-basics/

Verification and Validation:

 Verification refers to the set of tasks that ensure (guarantee) that software

correctly implements a specific function.

 Validation refers to a different set of tasks that ensure (guarantee) that the

software that has been built is traceable to customer requirements.

According to Boehm scientist:

 Verification: “Are we building the product right?”

 Validation: “Are we building the right product?”

Difference between Verification and Validation

Verification Validation

Verification is the process to find
whether the software meets the

specified requirements for particular
phase.

The validation process is checked
whether the software meets requirements

and expectation of the customer.

It estimates an intermediate product. It estimates the final product.

The objectives of verification are to
check whether software is constructed

according to requirement and design
specification.

The objectives of the validation are to
check whether the specifications are

correct and satisfy the business need.

It describes whether the outputs are as

per the inputs or not.

It explains whether they are accepted by

the user or not.

Verification is done before the
validation.

It is done after the verification.

Plans, requirement, specification, code
are evaluated during the verifications.

Actual product or software is tested
under validation.

It manually checks the files and
document.

It is computer software or developed
program based checking of files and
document.

Software Testing Strategy:
A strategy of software testing is shown in the context of spiral.

Following figure shows the testing strategy:

Test strategies for conventional software:
Following are the four strategies for conventional software:

1) Unit testing

2) Integration testing
3) Validation testing

4) System testing

1) Unit testing

 Unit testing starts at the centre and each unit is implemented in source code.
 Unit testing focus on the smallest unit of software design, i.e module or software
component.

 Test strategy conducted on each module interface to access the flow of input and
output.

 The local data structure is accessible to verify integrity during execution.
 Boundary conditions are tested.
 In which all error handling paths are tested.

 An Independent path is tested.

Following figure shows the unit testing:

The unit test environment is as shown in following figure:

Difference between stub and driver

Stub Driver

Stub is considered as subprogram. It is a simple main program.

Stub does not accept test case data. Driver accepts test case data.

It replaces the modules of the program

into subprograms and is tested by the
next driver.

Pass the data to the tested

components and print the
returned result.

2) Integration testing (sometimes called sandwich testing)

 An integration testing focuses on the construction and design of the software.

 Integration testing is used for the construction of software architecture.

 Selection of an integration strategy depends upon software characteristics and,
sometimes, project schedule. In general, a combined approach that uses top-

down tests for upper levels of the program structure, coupled with bottom-up
tests for subordinate levels may be the best compromise.

 As integration testing is conducted, the tester should identify critical modules.

There are two approaches of incremental testing are:
i) Non incremental integration testing

ii) Incremental integration testing

i) Non incremental integration testing
 Combines all the components in advanced.

ii) Incremental integration testing
 The programs are built and tested in small increments.
 The errors are easier to correct and isolate.

 Interfaces are fully tested and applied for a systematic test approach to it.
Following are the incremental integration strategies:

a. Top-down integration
b. Bottom-up integration

a. Top-down integration

 It is an incremental approach for building the software architecture.
 It starts with the main control module or program.

 Modules are merged by moving downward through the control hierarchy.
Following figure shows the top down integration.

b. Bottom-up integration
In bottom up integration testing the components are combined from the lowest level
in the program structure.

The bottom-up integration is implemented in following steps:

 The low level components are merged into clusters which perform a specific software
sub function.

 A control program for testing (driver) coordinate test case input and output.

 After these steps are tested in cluster.
 The driver is removed and clusters are merged by moving upward on the program

structure.

Following figure shows the bottom up integration:

c) Regression testing

 Regression testing is used to check for defects propagated (circulated) to other

modules by changes made to existing program. Thus regression testing is used

to reduce the side effects of the changes.

 In regression testing the software architecture changes every time when a new

module is added as part of integration testing.

 Each time a new module is added as part of integration testing, the software

changes.
 New data flow paths are established, new I/O may occur, and new control

logic is invoked. These changes may cause problems with functions that

previously worked flawlessly.
 In the context of an integration test strategy, regression testing is the re-

execution of some subset of tests that have already been conducted to ensure

that changes have not propagated unintended side effects.
 When any modification or changes are done to the application or even when

any small change is done to the code then it can bring unexpected issues. Along

with the new changes it becomes very important to test whether the existing

functionality is intact or not.
 This can be achieved by doing the regression testing.
 The purpose of the regression testing is to find the bugs which may get

introduced accidentally because of the new changes or modification.
 During confirmation testing the defect got fixed and that part of the

application started working as intended. But there might be a possibility that

the fix may have introduced or uncovered a different defect elsewhere in the

software.

 The way to detect these unexpected side-effects of fixes is to do regression

testing.
 This also ensures that the bugs found earlier are NOT creatable.
 Usually the regression testing is done by automation tools because in order to

fix the defect the same test is carried out again and again and it will be very

tedious and time consuming to do it manually.
 During regression testing the test cases are prioritized depending upon the

changes done to the feature or module in the application. The feature or module

where the changes or modification is done that entire feature is taken into

priority for testing.
 This testing becomes very important when there are continuous modifications

or enhancements done in the application or product.
 These changes or enhancements should NOT introduce new issues in the

existing tested code.
 This helps in maintaining the quality of the product along with the new

changes in the application.
Example:

Let‘s assume that there is an application which maintains the details

of all the students in school. This application has four buttons Add,

Save, Delete and Refresh. All the buttons functionalities are working

as expected. Recently a new button Update is added in the

application. This Update button functionality is tested and confirmed

that it‘s working as expected. But at the same time it becomes very

important to know that the introduction of this new button should not

impact the other existing buttons functionality. Along with the

Update button all the other buttons functionality are tested in order to

find any new issues in the existing code. This process is known as

regression testing.

When to use Regression testing it:
1. Any new feature is added
2. Any enhancement is done
3. Any bug is fixed

4. Any performance related issue is fixed

Advantages of Regression testing:
• It helps us to make sure that any changes like bug fixes or any

enhancements to the module or application have not impacted the existing

tested code.

• It ensures that the bugs found earlier are NOT creatable.

• Regression testing can be done by using the automation tools

• It helps in improving the quality of the product.

Disadvantages of Regression testing:
• If regression testing is done without using automated tools then it can be

very tedious and time consuming because here we execute the same set of

test cases again and again.

• Regression test is required even when a very small change is done in the

code because this small modification can bring unexpected issues in the

existing functionality.

d) Smoke testing

 The smoke testing is a kind of integration testing technique used for time
critical projects wherein the project needs to be assessed (judged) on frequent
basis.

 The developed software components are translated into code and merge to
complete the product.

 Software components already translated into code are integrated into a “build”.
The “build” can be data files, libraries, reusable modules, or program
components.

 A series of tests are designed to expose errors from build so that the “build”
performs its functioning correctly.

 The “build” is integrated with the other builds and the entire product is some
tested daily.

 Smoke testing provides a number of benefits when it is applied on complex,
time critical software projects.

 Integration risk is minimized.

 The quality of the end product is improved.

 Error diagnosis and correction are simplified.

 Progress is easier to assess.

Difference between Regression and smoke testing

Regression testing Smoke testing

Regression testing is used to check

defects generated to other modules by
making the changes in existing

programs.

At the time of developing a software

product smoke testing is used.

In regression tested components are
tested again to verify the errors.

It permits the software development team
to test projects on a regular basis.

Regression testing needs extra
manpower because the cost of the
project increases.

Smoke testing does not need an extra
manpower because it does not affect the
cost of project.

Testers conduct the regression
testing.

Developer conducts smoke testing just
before releasing the product.

3).Validation testing:
It checks all the requirements like functional, behavioral and performance
requirement are validate against the construction software.
In validation testing the main focus is to identify errors in

 System i/o
 System functions and information data

 System interfaces with external parts
 User interfaces
 System behavior and performance

Acceptance Testing:

The Acceptance Testing is a kind of testing conducted to ensure that the s/w works
correctly in the user work environment. It can be conducted over a period of weeks
or months.

Types of Acceptance testing are:

Alpha and Beta testing:

Alpha testing Beta testing

Alpha testing is executed at

developers end by the customer.
Tested or performed at developer’s
site

Beta testing is executed at end-user

sites in the absence of a developer.
Tested or performed at customer’s
site

It handles the software project and
applications.

It usually handles software product.

It is not open to market and the

public.

It is always open to the market and

the public.

Alpha testing does not have any

different name.

Beta testing is also known as the

field testing.

Alpha testing is not able to test the
errors because the developer does

not known the type of user.

In beta testing, the developer
corrects the errors as users report

the problems.

In alpha testing, developer

modifies the codes before release
the software without user
feedback.

In beta testing, developer modifies

the code after getting the feedback
from user.

4) System testing

 System testing is known as the testing behavior of the system or software, according
to the software requirement specification.

 It is a series of various tests.

 It allows testing, verifying and validating the business requirement and application
architecture.

 The primary motive of the tests is entirely to test the computer-based system.

Following are the system tests for software-based system

1. Recovery testing
 It is intended to check the system’s ability to recover from failures.

 To check the recovery of the software, force the software to fail in various ways.
 Reinitialization, check pointing mechanism, data recovery and restart are evaluated

correctness.

2. Security testing
 It verifies that system protection mechanism prevent improper access or data

alteration.

 It also verifies that protection mechanisms build into the system prevent intrusion
such as unauthorized internal or external access or determined the damage.

 It checks the system protection mechanism and secure improper access.
3. Stress testing

 Determines breakpoint of a system to establish maximum service level.

 System executes in a way which demands resources in abnormal quantity,
frequency or volume.

 A variation of stress testing is known as sensitivity testing.
4. Performance testing

 Performance testing is designed to test run-time performance of the system in the

context of an integrated system.
 It always combines with the stress testing and needs both hardware and software

requirements.

5. Deployment testing
 It is also known as configuration testing.

 The software works in each environment in which it is to be operated.

Types of Unit testing:

A).White Box Testing:

• White-box testing is the detailed investigation of internal logic and structure of
the code.

• White-box testing, sometimes called glass-box testing or open-box testing.
• It is a test-case design philosophy that uses the control structure described

as part of component-level design to derive test cases.

• The tester needs to have a look inside the source code and find out which
unit/chunk of the code is behaving inappropriately.

• Using White-box testing methods, you can derive test cases that

(1) Guarantee that all independent paths within a module have been exercised

at least once,
(2) Exercise all logical decisions on their true and false sides,
(3) Execute all loops at their boundaries and within their operational bounds,

and
(4) Exercise internal data structures to ensure their validity.

1.Basis Path Testing:
• Basis path testing is a white-box testing technique.
• The basis path method enables the test-case designer to derive a logical

complexity measure of a procedural design and use this measure as a

guide for defining a basis set of execution paths.

• Test cases derived to exercise the basis set are guaranteed to execute

every statement in the program at least one time during testing.

I. Flow Graph Notation
II. Independent Program Paths

III. Deriving Test Cases
IV. Graph Matrices

 I.Flow Graph Notation:
• A simple notation for the representation of control flow, called a flow graph

(or program graph).
• The flow graph depicts logical control flow using the notation in the following

figure.
• Arrows called edges represent flow of control

• Circles called nodes represent one or more actions.
• Areas bounded by edges and nodes called regions.

• A predicate node is a node containing a condition.
• Any procedural design can be translated into a flow graph.
• Note that compound Boolean expressions at tests generate at least two

Advantages Disadvantages

As the tester has knowledge of the
source code, it becomes very easy

to find out which type of data can
help in testing the application
effectively

Due to the fact that a skilled tester is
needed to perform white-box testing,

the costs are increased.

It helps in optimizing the code. Sometimes it is impossible to look into

every nook and corner to find out
hidden errors that may create

problems, as many paths will go
untested.

Extra lines of code can be removed
which can bring in hidden defects.

It is difficult to maintain white-box

testing, as it requires specialized tools
like code analyzers and debugging
tools.

Due to the tester's knowledge

about the code, maximum
coverage is attained during test
scenario writing.

predicate node and additional arcs.

• To illustrate the use of a flow graph, consider the procedural design
representation in Figure.

• Here, Figure (a) flow chart is used to depict program control structure.

• Figure(b) maps the flowchart into a corresponding flow graph
(assuming that no compound conditions are contained in the decision

diamonds of the flowchart).

• Figure(b), each circle, called a flow graph node, represents one or more

procedural statements.
• A sequence of process boxes and a decision diamond can map into a single

node.

• The arrows on the flow graph, called edges or links, represent flow of

control and are analogous to flowchart arrows.
• An edge must terminate at a node, even if the node does not represent

any procedural statements (e.g., see the flow graph symbol for the if-

then-else construct).
• Areas bounded by edges and nodes are called regions. When counting

regions.

II.Independent Program Paths:

• An independent path is any path through the program that introduces at

least one new set of processing statements or a new condition.

• Cyclomatic complexity is software metric that provides a quantitative
measure of the logical complexity of a program.

• When used in the context of the basis path testing method, the value

computed for Cyclomatic complexity defines the number of independent
paths in the basis set of a program and provides with an upper bound for

the number of tests that must be conducted to ensure that all
statements have been executed at least once.

• Cyclomatic complexity has a foundation in graph theory and provides

with extremely useful software metric.

• Complexity is computed in one of three ways:

1. The number of regions of the flow graph is called the Cyclomatic
complexity.

2. Cyclomatic complexity V(G) for a flow graph G is defined as

V(G) =E – N + 2

where E is the number of flow graph edges and N is the number of flow

graph nodes.

3. Cyclomatic complexity V(G) for a flow graph G is also defined as

 V(G) = P+ 1

where P is the number of predicate nodes(decision nodes) contained in
the flow graph G.

III.Deriving Test Cases:

The following steps can be applied to derive the basis set:

1. Using the design or code as a foundation, draw a corresponding flow

graph.

2. Determine the Cyclomatic complexity of the resultant flow graph.

3. Determine a basis set of linearly independent paths.

4. Prepare test cases that will force execution of each path in the basis set.

IV.Graph Matrices:

• A data structure, called a graph matrix, can be quite useful for
developing a software tool that assists in basis path testing.

• A graph matrix is a square matrix whose size (i.e., number of rows
and columns) is equal to the number of nodes on the flow graph.

• Each row and column corresponds to an identified node, and

matrix entries correspond to connections (an edge) between nodes.

• A simple example of a flow graph and its corresponding graph matrix is

shown in Figure.

• Referring to the figure, each node on the flow graph is identified by

numbers, while each edge is identified by letters.

• A letter entry is made in the matrix to correspond to a connection
between two nodes. For example, node 3 is connected to node 4 by
edge b.

• The graph matrix is nothing more than a tabular representation of a flow

graph.

• By adding a link weight to each matrix entry, the graph matrix can

become a powerful tool for evaluating program control structure
during testing.

• The link weight provides additional information about control flow. In

its simplest form, the link weight is 1 (a connection exists) or 0 (a
connection does not exist).

2. Control Structure Testing:
• Although basis path testing is simple and highly effective, it is not sufficient

in itself.
• Other variations on control structure testing necessary. These broaden

testing coverage and improve the quality of white-box testing.

 I.Condition testing:

• Condition testing is a test-case design method that exercises the
logical conditions contained in a program module.

• A simple condition is a Boolean variable or a relational expression,

possibly preceded with one NOT (¬) operator.
• A relational expression takes the form

 E1<relational-operator> E2
• Where E1 and E2 are arithmetic expressions and <relational-

operator> is one of the following:
• A compound condition is composed of two or more simple

conditions, Boolean operators, and parentheses.

• The condition testing method focuses on testing each condition in

the program to ensure that it does not contain errors.

 II.Data Flow Testing
• The data flow testing method selects test paths of a program

according to the locations of definitions and uses of variables in the
program.

• To illustrate the data flow testing approach, assume that each
statement in a program is assigned a unique statement number and
that each function does not modify its parameters or global variables.

• For a statement with S as its statement number,

• DEF(S)= {X | statement S contains a definition of X}

• USE(S) = {X | statement S contains a use of X}

• If statement S is an if or loop statement, its DEF set is empty and its
USE set is based on the condition of statement S. The definition of

variable X at statement S is said to be live at statement S‘ if there
exists a path from statement S to statement S‘ that contains no other
definition of X.

 III.Loop Testing

• Loops are the foundation for the vast majority of all algorithms
implemented in software.

• Loop testing is a white-box testing technique that focuses exclusively

on the validity of loop constructs.
• Four different classes of loops can be defined:

 a.Simple loops:
The following set of tests can be applied to simple loops, where n is

the maximum number of allowable passes through the loop.
1. Skip the loop entirely.
2. Only one pass through the loop.
3. Two passes through the loop.
4. m passes through the loop where m < n.

5. n - 1, n, n + 1 passes through the loop.

 b.Nested loops:

 If we were to extend the test approach for simple loops to

nested loops, the number of possible tests would grow
geometrically as the level of nesting increases.

1. Beizer suggests an approach that will help to reduce the number
of tests:

2. Start at the innermost loop. Set all other loops to minimum
values.

3. Conduct simple loop tests for the innermost loop while
holding the outer loops at their minimum iteration parameter
(e.g., loop counter) values. Add other tests for out-of-range or
excluded values.

4. Work outward, conducting tests for the next loop, but
keeping all other outer loops at minimum values and other

nested loops to ―typical‖ values.

5. Continue until all loops have been tested.
c.Concatenated loops:

 In the concatenated loops, if two loops are independent of each other
then they are tested using simple loops or else test them as nested
loops. However if the loop counter for one loop is used as the initial

value for the others, then it will not be considered as an independent
loops.

d.Unstructured loops: Whenever possible, this class of loops should be
redesigned to reflect the use of the structured programming constructs.

B).Black Box Testing:

• Black-box testing, also called behavioral testing.

• It focuses on the functional requirements of the software.

• A Black-box testing technique enables to derive sets of input

conditions that will fully exercise all functional requirements for

a program.

• Black-box testing attempts to find errors in the following categories:
 incorrect or missing functions
 interface errors
 errors in data structures or external database access
 behavior or performance errors

 initialization and termination errors.

 Black – Box Testing Techniques are:

1. Graph-Based Testing Methods

2. Equivalence Partitioning

3. Boundary Value Analysis

4. Orthogonal Array Testing

1. Graph-Based Testing Methods:
 The first step in black-box testing is to understand the objects5

that are modeled in software and the relationships that connect

these objects.

 Next step is to define a series of tests that verify ―all objects have

the expected relationship to one another.

 To accomplish these steps, create a graph—a collection of nodes

that represent objects, links that represent the relationships

between objects, node weights that describe the properties of a

node (e.g., a specific data value or state behavior), and link

weights that describe some characteristic of a link.

 The symbolic representation of a graph is shown in below Figure.

 Nodes are represented as circles connected by links that take a
number of different forms.

 A directed link (represented by an arrow) indicates that a

relationship moves in only one direction.

 A bidirectional link, also called a symmetric link, implies that the

relationship applies in both directions.

 Parallel links are used when a number of different relationships

are established between graph nodes.

2. Equivalence Partitioning:

 Equivalence partitioning is a black-box testing method that

divides the input domain of a program into classes of data from

which test cases can be derived.

 Test-case design for equivalence partitioning is based on an

evaluation of equivalence classes for an input condition.

 Equivalence classes may be defined according to the following guidelines:

o If an input condition specifies a range, one valid and two

invalid equivalence classes are defined.

o If an input condition requires a specific value, one valid and

two invalid equivalence classes are defined.

o If an input condition specifies a member of a set, one valid

and one invalid equivalence class are defined.

o If an input condition is Boolean, one valid and one invalid class are
defined.

3. Boundary Value Analysis:

• A greater number of errors occur at the boundaries of the input
domain rather than in the ―center of input domain.

• For this reason that boundary value analysis (BVA) has been

developed as a testing technique

• Boundary value analysis leads to a selection of test cases that
exercise bounding values.

• BVA leads to the selection of test cases at the ―edges‖ of the

class. Rather than focusing solely on input conditions.

• BVA derives test cases from the output domain also.

Guidelines for BVA are similar in many respects to those provided

for equivalence partitioning:

1. If an input condition specifies a range bounded by values a and

b, test cases should be designed with values a and b and just

above and just below a and b.

2. If an input condition specifies a number of values, test cases

should be developed that exercise the minimum and maximum

numbers. Values just above and below minimum and

maximum are also tested.

3. Apply guidelines 1 and 2 to output conditions. For example,
assume that a temperature versus pressure table is required as
output from an engineering analysis program. Test cases should

be designed to create an output report that produces the
maximum (and minimum) allowable number of table entries.

4. If internal program data structures have prescribed boundaries

(e.g., a table has a defined limit of 100 entries), be certain to
design a test case to exercise the data structure at its boundary.

Most software engineers intuitively perform BVA to some
degree. By applying these guidelines, boundary testing will be
more complete, thereby having a higher likelihood for error

detection.

4. Orthogonal Array Testing:
• Orthogonal array testing can be applied to problems in which the

input domain is relatively small but too large to accommodate

exhaustive testing.

• The orthogonal array testing method is particularly useful in finding

region faults—an error category associated with faulty logic within a

software component.

• For example, when a train ticket has to be verified, the factors such

as - the number of passengers, ticket number, seat numbers and the

train numbers has to be tested, which becomes difficult when a

tester verifies input one by one. Hence, it will be more efficient when

he combines more inputs together and does testing. Here, use the

Orthogonal Array testing method.

• When orthogonal array testing occurs, an L9 orthogonal array of test
cases is created.

• The L9 orthogonal array has a ―balancing property.

• That is, test cases (represented by dark dots in the figure) are

―dispersed uniformly throughout the test domain,‖ as illustrated in

the right-hand cube in Figure.

• To illustrate the use of the L9 orthogonal array, consider the send

function for a fax application.

• Four parameters, P1, P2, P3, and P4, are passed to the send

function. Each takes on three discrete values. For example, P1 takes

on values:

• P1 = 1, send it now : P1 = 2, send it one hour later : P1 = 3, send it after
midnight

• P2, P3, and P4 would also take on values of 1, 2, and 3, signifying other

send functions.

• If a ―one input item at a time testing strategy were chosen, the

following sequence of tests (P1,P2,P3,P4) would be specified:

(1,1,1,1),(2,1,1,1),(3,1,1,1), (1, 2, 1, 1), (1, 3, 1, 1), (1, 1, 2, 1), (1, 1, 3,

1), (1, 1, 1, 2), and (1, 1, 1, 3).

• The orthogonal array testing approach enables you to provide good

test coverage with far fewer test cases than the exhaustive strategy.

An L9 orthogonal array for the fax send function is illustrated in

Figure.

Difference between white and black box testing:

White-Box Testing Black-box Testing

White-box testing known as glass-box

or clear box testing.

Black-box testing also called as

behavioral testing.

 White box testing requires the tester

to know and understand how the
software works, they are able to “see
inside” the program.

Black box testing requires the tester

to understand what the program is
supposed to do, but not how it works,
they are unable to “see inside” the

program.

It starts early in the testing process. It is applied in the final stages of
testing.

In white box testing the procedural
details, all the logical paths all the

internal data structures are closely
examined.

Black box testing examines
fundamental aspect of the system. A

black box refers to a system whose
behavior has to be observed entirely
by inputs and outputs.

In this testing knowledge of
implementation is needed.

In this testing knowledge of
implementation is not needed.

White box testing is mainly done by
the developer.

This testing is done by the testers.

In this testing, the tester must be

technically sound.

In black box testing, testers may or

may not be technically sound.

Various white box testing methods are:
Basic Path Testing and Control

Structure Testing.

Various black box testing are:
Graph-Based testing method,

Equivalence partitioning, Boundary
Value Analysis, Orthogonal Array

Testing.

This type of testing is suitable for small
projects.

This type of testing is suitable for
large projects.

White box testing lead to test the
program thoroughly

During black box testing the program
cannot be tested 100 percent

Art of Debugging:

Debugging process
 Debugging process is not a testing process, but it is the result of testing.
 This process starts with the test cases.

 The debugging process gives two results, i.e., the cause is found and corrected
second is the cause is not found.

 Debugging identifies the correct cause of error.

 Debugging process beings with the execution of a test case.

 Debugging Strategies:

• Objective of debugging is to find and correct the cause of a software error or
defect.

• Debugging methods and tools are not a substitute for careful

evaluation based on a complete design model and clear source code

 There are three main debugging strategies

Debugging Strategies:
 Following are the debugging strategies:

1. Brute force
 A brute force approach is an approach that finds all the possible
solutions to find a satisfactory solution to a given problem. The brute

force algorithm tries out all the possibilities till a satisfactory solution is not
found.

 Most common and least efficient method for isolating the cause of an s/w
error. This is applied when all else fails.

 In this method, run-time traces are invoked and program is loaded with

output statements.
 It tries to find the cause from the lot of information leads to waste of time

and effort.
 This is the least efficient method of debugging. In this method “let computer
find the error” approach is used.

2. Backtracking
 Backtracking is a technique based on algorithm to solve problem. It
uses recursive calling to find the solution by building a solution step by

step increasing values with time.
 It removes the solution that doesn’t give rise to the solution of the problem

based on the constraints given to solve the problem.
 It is a common debugging approach, Useful for small programs.
 Backtracking is an algorithmic technique for solving problems recursively

by trying to build a solution incrementally, one piece at a time, removing
those solutions that fail to satisfy the constraints of the problem at any

point in time (by time, here, is referred to the time elapsed till reaching
any level of the search tree).

 The source code is traced manually till the cause is found.
3. Cause elimination

 Cause elimination establishes the concept of binary partitioning to reduce
the number of locations where errors can exist.

 Thus testing is an essential activity carried out during software development

process for improving quality of the product.
 It is a common debugging approach, Useful for small programs.

4.Automated Debugging:

• This supplements the above approaches with debugging tools that provide
semi-automated support like debugging compilers, dynamic debugging aids,

test case generators, mapping tools etc.

Software Quality:
• Software Quality conformance to explicitly stated functional and

performance requirements, explicitly documented development
standards, and implicit characteristics that are expected of all
professionally developed software.

• There are three main reasons for why software quality gets failed.
1. Software requirements must be well understood before the software

development process begins.
2. If the software confirms the explicit (clear) requirements but not
satisfying the implicit requirements then surely quality of software being

developed is poor.
3. The set of development criteria has to be decided in order to specify

the standards of the product. If such a criteria is not been fixed then
definitely the software product will lack the quality.

Factors that affect software quality can be categorized in two broad groups:
a) Factors that can be directly measured (e.g. defects uncovered during
testing)

b) Factors that can be measured only indirectly (e.g. usability or
maintainability)

 McCall, Richards, and Walters propose a useful categorization of factors

that affect software quality.

McCall’s quality factors:

1. Product operation

Correctness
Reliability

Efficiency
Integrity
Usability

2. Product Revision
Maintainability

Flexibility
Testability

3. Product Transition
Portability
Reusability

Interoperability

1. Correctness. The ability to fulfill the specification and customers

requirements.

2. Reliability. The extent to which a program can be expected to perform its

intended function with required precision.

3. Efficiency. The amount of computing resources and time required by a

program to perform its function.

4. Integrity. This is the controlling ability by which unauthorized access to the

system can be prevented.

5. Usability. The ability to prepare the valid input and interpret the correct

output of a program.

6. Maintainability. The effort required to locate and fix an error in a program.

7. Flexibility. Effort required to modify an operational program.

8. Testability. Effort required to test a program to ensure that it performs its

intended function.

9. Portability. Effort required to transfer the program from one hardware

and/or software system environment to another.

10. Reusability. Extent to which a program [or parts of a program] can be

reused in other applications—related to the packaging and scope of the

functions that the program performs.

11. Interoperability. The ability of the system to work with other system.

ISO 9126 Quality Factors
1.Functionality

2.Reliability
3.Usability

4.Efficiency
5.Maintainability
6.Portability

FURPS: functionality, usability, reliability, performance, and supportability.

The FURPS quality factors draw liberally from earlier work, defining the following

attributes for each of the five major factors:

• Functionality is assessed by evaluating the feature set and capabilities of the

program, the generality of the functions that are delivered, and the security of the

overall system.

• Usability is assessed by considering human factors, overall aesthetics,

consistency, and documentation.

• Reliability is evaluated by measuring the frequency and severity of failure, the

accuracy of output results, the mean-time-to-failure (MTTF), the ability to recover

from failure, and the predictability of the program.

• Performance is measured by processing speed, response time, resource

consumption, throughput, and efficiency.

 Supportability combines the ability to extend the program (extensibility),

adaptability, serviceability—these three attributes represent a more common term,

maintainability—in addition, testability, compatibility, configurability, the ease

with which a system can be installed, and the ease with which problems can be

localized.

Types of Software Metrics:

Software testing metrics are divided into three categories:
1. Product Metrics: A product’s size, design, performance, quality, and

complexity are defined by product metrics. Developers can improve the
quality of their software development by utilizing these features.

2. Process Metrics: A project’s characteristics and execution are defined by
process metrics. These features are critical to the SDLC process’s
improvement and maintenance (Software Development Life Cycle).

3. Project Metrics: Project Metrics are used to assess a project’s overall
quality. It is used to estimate a project’s resources and deliverables, as well
as to determine costs, productivity, and flaws.

Product Metrics:
1).Metrics for the Analysis model:

 It is useful in estimating the size and quality of the project.
 In order to determine the metrics in analysis model “size” of the software

is used as a measure.

a).Function point (FP) model metric:
 It is based on functionality of the delivered application.
 It is proposed by Albrecht in 1979 for IBM

 Function points (FP) are derived using countable measures of the
software requirements domain and assessments of the software
complexity.

 It measures the functionality of the delivered application.

 FP computed from the following parameters:

• Number of user inputs –Each user input which provides distinct

application data to the s/w is counted.

• Number of user outputs –Each user output that provides application

data to the user is counted. Ex: screens, reports and Error messages.

• Number of user inquiries –An on-line input that results in the
generation of some immediate software response in the form of an o/p.

• Number of files –Each logical master file, i.e., a logical grouping of data
that may be part of a database or a separate file.

• Number of external interfaces- All machine-readable interfaces that are
used to transmit information to another system is counted.

 The organization need to develop criteria which determine whether a

particular entry is simple, average or complex.

Types of FP Attributes

Measurements Parameters Examples

1.Number of External Inputs(EI) Input screen and tables

2. Number of External Output (EO) Output screens and reports

3. Number of external inquiries (EQ) Prompts and interrupts.

4. Number of internal files (ILF) Databases and directories

5. Number of external interfaces (EIF) Shared databases and functions.

All these parameters are then individually assessed for complexity.

FP = count total * (0.65 + (0.01 * sum (Fi)))

 ∑(fi) is the sum of all 14 questionnaires(given below and each question

value ranges from 0-5).

 ∑(fi) (degree of influence) ranges from 0 to 70(14*5, if max rating is 5 for

each question), i.e., 0 <= ∑(fi) <=70

Once the FP is calculated then we can compute various measures such as

1. Productivity=FP/Person-month
2. Quality=Number of faults/FP

3. Cost=$/FP
4. Documentation=pages of documentation/FP

Advantages:

 This method is independent of programming languages.
 It is based on the data which can be obtained in early stage of project.

Disadvantages:

 The FP has no significant meaning. It is just a numerical value.

Example: Compute the function point, productivity, documentation, cost per
function for the following data:

1. Number of user inputs = 24

2. Number of user outputs = 46

3. Number of inquiries = 8

4. Number of files = 4

5. Number of external interfaces = 2

6. Effort = 36.9 p-m

7. Technical documents = 265 pages

8. User documents = 122 pages

9. Cost = $7744/ month

Various processing complexity factors are: 4, 1, 0, 3, 3, 5, 4, 4, 3, 3, 2, 2, 4, 5.
Solution:

Measurement Parameter Count Weighing
factor

1. Number of external inputs (EI) 24 * 4 = 96

2. Number of external outputs (EO) 46 * 4 = 184

3. Number of external inquiries (EQ) 8 * 6 = 48

4. Number of internal files (ILF) 4 * 10 = 40

5. Number of external interfaces (EIF) Count-
total →

2 * 5 = 10
378

So sum of all fi (i ← 1 to 14) = 4 + 1 + 0 + 3 + 5 + 4 + 4 + 3 + 3 + 2 + 2 + 4 + 5 =

43
 FP = Count-total * [0.65 + 0.01 *∑(fi)]
 = 378 * [0.65 + 0.01 * 43]

 = 378 * [0.65 + 0.43]
 = 378 * 1.08 = 408

Total pages of documentation = technical document + user document
 = 265 + 122 = 387pages

Documentation = Pages of documentation/FP
 = 387/408 = 0.94

2). Metrics for Design Model:
 This model is developed by considering three aspects such as

 Architectural design metrics

 Metrics for Object Oriented Design (MOOD)

a).Architectural design Metrics:

 While determining the architectural design, primarily the characteristics
of program architecture are considered.

 It does not focus on inner working of the system.

i).Metrics by Card and Glass

 Two scientists Card and Glass have suggested three complexity
measures as

Structural complexity:

 It depends upon the fan-out for modules.
 It can be defined as S(k)=f2out(k)

 Where fout represents fan-out for module k [fan out means number
of modules that are subordinating module k]

 Data complexity:
 It is the complexity within the interface of internal module.

 For some module k it can be defined as
 D(k)=tot_var(k) /[fout(k)+1]

Where tot_var is total number of input and output variables going to and
coming out of the module.

 System complexity:
 System complexity is the combination of structural and data complexity.

 It can be denoted as Sy(k) = S(k)+D(k)
When structural, data and system complexity get increased the overall
architectural complexity also gets increased.

ii).Metrics by Fenton:
 These are simple morphology metrics that are used to compare

different architectures with the help of size, depth, width and edge
to node ratio.

 The metrics can be given as below-

 Size = n + e
Where n is the number of nodes and e is number of edges.
 Depth is the longest path from root to leaf node.

 Width is the maximum number of nodes at particular level
 Edge to node ration r= e/n

Size=n+e=15+15 (here 15 nodes and 15 edges)
 =30

Depth=longest path from the root
 =3
Width =maximum number of nodes at particular level

 =6 (at level 2 there are 6 nodes)
Similarly edge to node ration can be=e/n

 =15/15 =1

b). Metrics for Object Oriented Design (MOOD):

i).Whitmire has suggested nine measurable characteristics of object
oriented design and that are-

1) Size - It can be used to measure the size of the product.

2) Complexity -It is a measure representing the characteristics that how
the classes are interrelated with each other.

3) Coupling - It is a measure stating the collaborations between classes
or number of messages that can be passed between the objects.

a.Population: means a number of classes and operations

b.Volume: means total number of classes or operations that are
collected dynamically
c.Length: means total number of interconnected design elements

d.Functionality: is a measure of output delivered to the customer

4) Completeness - It is the measure representing all the requirements of
the design component
5) Cohesion - It is the degree by which the set of properties that are

working together to solve particular property.
6) Sufficiency - It is the measure representing the necessary

requirements of the design component
7) Primitiveness - The degree by which the operations are simple. In
other words, the measure by which number of operations are

independent upon other.

8) Similarity- The degrees to which two or more classes are similar with
respect to their functionalities and behavior.

9) Volatility -Due to changes in requirements or some other reasons
modifications in the design of application may occur. Volatility is a

measure that represents the probability of changes that will occur.

These product metrics for object oriented design is applicable to design

as well as analysis model.

ii)CK Metrics Suite:

 The metric for object oriented design is mainly based on the
fundamental unit called 'classes'.

 Chidamber and Kemerer have proposed object oriented software
metrics which are popularly known as CK metrics suite.

 These are six class based design metrics for 00 (object oriented)

systems.
 Weighted Methods per class (WMC), Depth of Inheritance Tree (DIT),

Number of children (NOC), coupling between object classes (CBO),
Response for a class (RFC), Lack of cohesion in Methods (LSOM).

 iii) MOOD (Metric for Object Oriented Design) Metrics Suite:

 MOOD metrics suite is proposed by Harrison Counsell and Nithi for
object oriented design.

 It includes two metrics

1) Method Inheritance Factor (MIF) and
2) Coupling Factor (CF)

1).Method Inheritance Factor (MIF):

The MIF can be computed as

 MIF= ΣMi(Ci))/ ΣMa(Ci))

 Where Ma(Ci) =Md(Ci)+Mi(Ci)

 And i vary from 1 to n and n denotes the total number of classes in

the architecture.

 Ci is a class within the architecture

 Ma(Ci) is the total number of Methods in Ci

 Mi(Ci) is number of Methods inherited in Ci

 Md(Ci) is number of Methods declared in class Ci

 MIF represents the impact of inheritance on Object Oriented system

2. Coupling Factor (CF):
 In software systems coupling represents the connection

between elements of object oriented design.
 The coupling factor can be denoted as follows-

 CF = ΣiΣjIsClient (Ci,Cj)/(T2c-Tc)

where,

 i and j varies from 1 to total number of classes in the architecture
Tc

 IsClient is a Boolean function, it is = 1 if there

exists a relationship between client and server classes
 IsClient = 0 if there is no relationship between client class and

server classes.
 As CF increases the complexity of object oriented design gets

increased.

 iv).Lorenz and Kidd 00 Metrics:

Lorenz and Kidd have proposed the conceptual division of class
based metric into four distinct categories
1) Class 2) Inheritance 3) Class internals 4) Externals

1. Class metrics- the total number of attributes and methods are
counted for each class.
2. Inheritance metrics -deals with the number of operations that can be

reused in the class hierarchy.
3. The class internals metric -deals with cohesion and code oriented

issues.
4. The external metric -is based on number of couplings between the
classes.

3).METRIC FOR SOURCE CODE:

 Halstead has proposed some software science metrics based on

commonsense, information theory and psychology.
 It is used to measure the size of the program, after the code is

generated or estimated once design is completed.

Let n1 = the number of distinct operators that appear in a program

 n2 = the number of distinct operands that appear in a program
 Overall program length N can be computed as

 N = n1log2 n1 + n2 log2 n2

 The program volume can be defined as V = N log2(n1+ n2)

Let N = Total count for all the operands in the program.

The program volume ration L can be defined as:

L=2/n1* n2/N

4).METRIC FOR TESTING:
 Test metrics help to determine what types of enhancements are

required in order to create a defect-free, high-quality software product.

 Halstead’s metrics for estimating the testing efforts are as given below.

 The Halstead Effort (e) can be defined as
 e = V/PL

where

Program volume V, and program level PL and it can be computed as
PL = 1/[(n1/2) x (N / n2)]

n1 = the number of distinct operators that appear in a program
n2 = the number of distinct operands that appear in a program
N = the total number of operator occurrences.

 The percentage of overall testing effort=testing effort of specific
module/testing efforts of all the modules.

5).METRICS FOR SOFTWARE MAINTENANCE:

 Software maintenance denotes any changes made to a
software product after it has been delivered to the customer.
Maintenance is necessity for almost any kind of product.

 However, most products need maintenance due to the wear and

tear caused by use.

 On the other hand, software products do not need

maintenance on this count, but need maintenance to correct
errors, enhance features, port to new platforms, etc.

Boehm [1981] proposed a formula for estimating maintenance costs using
Software Maturity Index, SMI. It is defined as:

SMI = [Mt–(Fc + Fa +Fd)/ Mt]

Mt = the number of modules in the current release (version)
Fc = the number of modules in the current release that have been
changed

Fa = the number of modules that are added in the current version
Fd = the number of modules deleted in the current version

When SMI reaches to the value 1.0 the product becomes more and more
stabilized. This SMI metrics is used for planning the software
maintenance activities.

V- Unit

Metrics for Process and Projects

Software measurements:

 Software measurement is a measure of software characteristics which

are measurable or countable. Software measurements are valuable for

many reasons, including measuring software performance, planning

work items, measuring productivity, and many other uses.

 Software measurements can be categorized as Direct measures and

Indirect measures.

 Direct measures of the software process include cost and effort applied.

Direct measures of the product, include lines of code (LOC) produced,

the cost and effort required to build software, execution speed, memory

size, and defects reported over some set period of time.

 Indirect measures of the product include functionality, quality,

complexity, efficiency, reliability, and maintainability.

Classification of Software Measurements:
These are Product, Process and Project metrics:

1. Product Metrics: These are the measures of various characteristics of the

software product. A product‘s size, design, performance, quality, and

complexity are defined by product metrics. Developers can improve the

quality of their software development by utilizing these features.

2. Process Metrics: These are the measures of various characteristics of the

software development life cycle (SDLC)process. A project‘s characteristics and

execution are defined by process metrics. These are used to measure the

characteristics of methods, techniques, and tools that are used for developing

software.

3. Project metrics: Project metrics are the metrics used by the project

manager to check the project's progress.

 Data from the past projects are used to collect various metrics, like time

and cost; these estimates are used as a base of new software.

 The project manager will check its progress from time-to-time and will

compare the effort, cost, and time with the original effort, cost and time.

 These metrics are used to decrease the development costs, time efforts

and risks.

 With the project metrics the project quality can also be improved.

 As quality improves, the number of errors and time, as well as cost

required, is also being reduced.

 Product metrics are further classified into size oriented metrics.

a). Size Oriented Metrics:

 Size of the product is measured in LOC (line of code).
 It is one of the earliest and simpler metrics for calculating the size of the

computer program. It is generally used in calculating and comparing the
productivity of programmers.

 These metrics are used to find the quality and productivity of the

product by using the size of the product as a metric.
Following are the points regarding LOC measures:

1. It is an older method that was developed when FORTRAN and COBOL
programming were very popular.

2. Productivity is defined as Kilo lines of code / effort i.e., KLOC / EFFORT,
where effort is measured in how many moths a person has worked.

3. Size-oriented metrics depend on the programming language used.

4. As productivity depends on KLOC, so assembly and C language code will

have more productivity.

5. LOC measure requires a level of detail which may not be practically

achievable.

6. The more expressive is the programming language, the lower is the

productivity.

7. LOC method of measurement does not apply to projects that deal with

visual (GUI-based) programming. User Interfaces (GUIs) use forms
basically. LOC metric is not applicable here.

8. These metrics are not universally accepted.

9. While counting lines of code don‘t count blank lines and don‘t count

comments.

Based on the LOC/KLOC count of software, the following size oriented
measures are computed:

 Quality = No of defects/ KLOC

 Cost = $/KLOC
 Documentation = Pages of documentation/KLOC

 Errors = No.of Errors / person-month
 Productivity = LOC / person-month
Here KLOC means Thousands of Lines of Code.

Advantages of LOC:
1. Simple to measure

Disadvantage of LOC:
1. It is defined on the code. For example, it cannot measure the size of the

specification.

2. It characterizes only one specific view of size, namely length, it takes no
account of functionality or complexity

3. Bad software design may cause an excessive line of code

4. It is language dependent

5. Users cannot easily understand it

b).Function oriented metric:

 It is based on functionality of the delivered application.

 It is proposed by Albrecht in 1979 for IBM
 Function points (FP) are derived using countable measures of the

software requirements to evaluate the software complexity.

Once the FP is calculated then we can compute various measures such as

 Productivity=FP/Person-month
 Quality=Number of faults/FP
 Cost=$/FP

 Documentation=pages of documentation/FP

Metrics for Software Quality:

 The overriding goal of software engineering is to produce a
high-quality system, application, or product within a time
frame that satisfies a market need.

 The quality of a system, application, or product is only as good as
the requirements that describe the problem, the design that
models the solution, the code that leads to an executable program,
and the tests that exercise the software to uncover errors.

a).Measuring Quality:

• There are many measures of software quality such as
correctness, maintainability, integrity, and usability.

• These provide useful indicators for the project team

Correctness:

• Correctness is the degree to which the software performs its required

function.
• The most common measure for correctness is defects per KLOC,

where a defect is defined as a verified lack of conformance to
requirements.

• Defects are those problems reported by a user of the program after

the program has been released for general use.
• For quality assessment purposes, defects are counted over a standard

period of time, typically one year.

Maintainability:

• Maintainability is the ease with which a program can be

corrected if an error is encountered, adapted if its environment

changes, or enhanced if the customer desires a change in

requirements.

• Mean -time-to-change (MTTC), the time it takes to analyze the

change request, design an appropriate modification, implement

the change, test it, and distribute the change to all users.

Integrity:

• Software integrity has become increasingly important in the age of

cyber terrorists and hackers.
• Attacks can be made on all three components of software: programs,

data, and documentation.

• To measure integrity, two additional attributes must be

defined: threat and security.

• Threat is the probability (which can be estimated or derived

from observed evidence) that an attack of a specific type will

occur within a given time.

• Security is the probability (which can be estimated or

derived from experiential evidence) that the attack of a

specific type will be repelled.

• The integrity of a system can then be defined as

integrity = summation [(1 – threat) × (1 – security)]

• where threat and security are summed over each type of attack.

Usability:

• If a program is not easy to use, it is often doomed to failure, even if

the functions that it performs are valuable

• Usability is an attempt to quantify user-friendliness and can

be measured in terms of four characteristics: (1) the physical

and or intellectual skill required to learn the system, (2) the

time required to become moderately efficient in the use of the

system, (3) the net increase in productivity measured when

the system is used by someone who is moderately efficient,

and (4) a subjective assessment.

b). Defect Removal Efficiency:

 Defect removal efficiency provides benefits at both the project and
process level

 It is a measure of the filtering ability of quality

assurances activities as they are applied throughout all

process framework activities

 It indicates the percentage of software errors found before software
release

 It is defined as DRE = E / (E + D)

 E is the number of errors found before delivery of the software to
the end user

 D is the number of defects found after delivery
 As D increases, DRE decreases (i.e., becomes a smaller and

smaller fraction)

 The ideal value of DRE is 1, which means no defects are found
after delivery

 DRE encourages a software team to institute techniques for

finding as many errors as possible before delivery.

RISK:

 A Risk is a Hazard. It is any real or potential condition that may be a

damage to or loss of a system, equipment or property; or damage to

the environment.

 A risk can lead to one or several consequences.

 A Risk is

 The expectation of a loss or damage (consequence)

 The combined severity and probability of a loss

 The long term rate of loss
 A potential problem (leading to a loss) that may - or may not occur in

the future.

 Treating a risk means understanding it better, avoiding or reducing it

(risk mitigation), or preparing for the risk to materialize.

 Risk Management is a set of practices and support tools to identify,

analyze, and treat risks explicitly.

 Risk management tries to reduce the probability of a risk to occur

and the impact (loss) caused by risks.

REACTIVE VERSUS PROACTIVE RISK STRATEGIES:
• The majority of software teams rely exclusively on reactive risk

strategies. At best, a reactive strategy monitors the project for likely

risks. Resources are set aside to deal with them, should they

become actual problems.

• The software team does nothing about risks until something goes

wrong. Then, the team flies into action in an attempt to correct the

problem rapidly. This is often called a fire-fighting mode.

• A considerably more intelligent strategy for risk management is to be
proactive.

• A proactive strategy begins long before technical work is initiated.

Potential risks are identified, their probability and impact are

assessed, and they are ranked by importance. Then,

• The software team establishes a plan for managing risk. The

primary objective is to avoid risk, but because not all risks can be

avoided, the team works to develop a contingency plan that will

enable it to respond in a controlled and effective manner.

 Risk always involves two characteristics:

• Uncertainty—the risk may or may not happen; that is,

there are no 100% probable risks.

• Loss—if the risk becomes a reality, unwanted

consequences or losses will occur.

• When risks are analyzed, it is important to quantify the level of

uncertainty and the degree of loss associated with each risk

Software Risks:
 Different categories of software risks are follows:

 Project risks threaten the project plan. That is, if project risks

become real, it is likely that project schedule will fall and that

costs will increase. Project risks identify potential budgetary,

schedule, personnel (staffing and organization), resource,

customer, and requirements problems and their impact on a

software project.

 Technical risks threaten the quality and timeliness of the

software to be produced. If a technical risk becomes a reality,

implementation may become difficult or impos- sible. Technical

risks identify potential design, implementation, interface,

verification, and maintenance problems. In addition,

specification ambiguity, technical uncertainty, technical

obsolescence, and "leading-edge" technology are also risk factors.

 Business risks threaten the viability of the software to be built.

Business risks often jeopardize the project or the product.

 Top five business risks are:

 Building a excellent product or system that no one really wants

(market risk),

 Building a product that no longer fits into the overall business

strategy for the company (strategic risk),

 Building a product that the sales force doesn't understand how

to sell (sales risk)

 Losing the support of senior management due to a change in

focus or a change in people (management risk), and

 Losing budgetary or personnel commitment (budget risks).

Another general categorization of risks has been proposed by Charette.

 Known risks are those that can be uncovered after careful

evaluation of the project plan, the business and technical

environment in which the project is being devel- oped, and other

reliable information sources (e.g., unrealistic delivery date, lack

of documented requirements or software scope, poor

development environment).

 Predictable risks are extrapolated from past project experience

(e.g., staff turnover, poor communication with the customer,

dilution of staff effort as ongoing maintenance requests are

serviced).

 Unpredictable risks can occur, but they are extremely difficult to

identify in advance.

RISK IDENTIFICATION:
• Risk identification is a systematic attempt to specify threats to the

project plan (estimates, schedule, resource loading, etc.).

• By identifying known and predictable risks, the project manager

takes a first step toward avoiding them when possible and

controlling them when necessary.

• There are two distinct types of risks:
 Generic risks and Product-specific risks.

• Generic risks are a potential threat to every software project.
• Product-specific risks can be identified only by those with a clear

understanding of the technology, the people, and the environment

that is specific to the software that is to be built.

• To identify product-specific risks, the project plan and the software

statement of scope are examined, and an answer to the following

question is developed: ―What special characteristics of this product

may threaten our project plan?

• One method for identifying risks is to create a risk item checklist.
• The checklist can be used for risk identification and focuses on

some subset of known and predictable risks in the following generic

subcategories:

• Product size risks -associated with the overall size of the software to

be built or modified.
• Business impact risks - associated with constraints imposed by

management or the marketplace.
• Stakeholder characteristics risks -associated with the

sophistication of the stakeholders and the developer‗s ability to

communicate with stakeholders in a timely manner.

• Process definition risks -associated with the degree to which the

software process has been defined and is followed by the

development organization.

• Development environment risks -associated with the availability

and quality of the tools to be used to build the product.

• Technology to be built risks -associated with the complexity of the
system to be built and the newness of the technology that is
packaged by the system.

• Staff size and experience risks -associated with the overall

technical and project experience of the software engineers who will

do the work.

 i).Assessing Overall Project Risk:
The following questions have been derived from risk data obtained

by surveying experienced software project managers in different parts
of the world.

1. Have top software and customer managers formally committed to
support the project?

2. Are end users enthusiastically committed to the project and the
system/ product to be built?

3. Are requirements fully understood by the software engineering team

and its customers?
4. Have customers been involved fully in the definition of requirements?

5. Do end users have realistic expectations?
6. Is the project scope stable?
7. Does the software engineering team have the right mix of skills?

8. Are project requirements stable?
9. Doestheprojectteamhaveexperiencewiththetechnologytobeimplemente

d?
10. Is the number of people on the project team adequate to do the job?

11. Do all customer/user constituencies agree on the importance of

the project and on the requirements for the system/product to be

built the project manager identify the risk drivers that affect

software risk components— performance, cost, support, and

schedule.

 ii).The risk components are defined in the following manner:
• Performance risk—the degree of uncertainty that the product will

meet its requirements and be fit for its intended use.

• Cost risk—the degree of uncertainty that the project budget will be

maintained.
• Support risk—the degree of uncertainty that the resultant software

will be easy to correct, adapt, and enhance.

• Schedule risk—the degree of uncertainty that the project schedule

will be maintained and that the product will be delivered on time.

• The impact of each risk driver on the risk component is divided

into one of four impact categories—negligible, marginal, critical, or

catastrophic.

RISK PROJECTION:

• Risk projection, also called risk estimation, attempts to rate each risk
in two ways.

1. The likelihood or probability or chance that the risk is real and
2. The consequences (penalty) of the problems associated with the

risk, should it occur

 Managers and technical staff to perform four risk projection steps:
1. Establish a scale that reflects the chance of a risk.
2. Describe the consequences of the risk.

3. Estimate the impact of the risk on the project and the product.
4. Evaluate the overall accuracy of the risk projection so that there will

be no misunderstandings.

The intent of these steps is to consider risks in a manner that leads to

prioritization. No software team has the resources to address every

possible risk with the same degree of rigor. By prioritizing risks, you can

allocate resources where they will have the most impact.

i).Developing a Risk Table
• A risk table provides you with a simple technique for risk

projection.

• A sample risk table is illustrated in the given Figure.

• List all the risks in the first column of the table.
• Each risk is categorized in the second column (e.g., PS implies a

project size risk, BU implies a business risk).

• The probability of occurrence of each risk is entered in the next

column of the table.

• The probability value for each risk can be estimated by team

members individually.

• Next, the impact of each risk is assessed. Each risk component

is assessed, and an impact category is determined.

• The categories for each of the four risk components—performance,

support, cost, and schedule— are averaged to determine an overall

impact value.

• Once the first four columns of the risk table have been

completed, the table is sorted by probability and by impact.

• High-probability, high-impact risks percolate to the top of the

table, and low-probability risks drop to the bottom.

ii).Assessing Risk Impact
• Three factors affect the consequences that are likely if a risk does

occur: its nature, its scope, and its timing.

• The nature of the risk indicates the problems that are likely if it

occurs.

• For example, a poorly defined external interface to customer

hardware (a technical risk) will prevent early design and testing

and will likely lead to system integration problems late in a project.

• The scope of a risk combines the severity (just how serious is it?)

with its overall distribution (how much of the project will be

affected or how many stakeholders are harmed?).

• The timing of a risk considers when and for how long the impact

will be felt. In most cases, you want the ―bad news‖ to occur as

soon as possible, but in some cases, the longer the delay, the

better.

• The overall risk exposure RE is determined using the following

relationship

RE= P * C

 Where P is the probability of occurrence for a risk, and C is the

cost to the project should the risk occur.

RISK REFINEMENT:
 It may be possible to refine the risk into a set of more detailed

risks, each somewhat easier to mitigate, monitor, and manage.

 One way to do this is to represent the risk in condition-transition-

consequence (CTC) format. That is, the risk is stated in the

following form:

<condition> then there is concern that (possibly) <consequence>.

 Given that all reusable software components must conform to

specific design standards and that some do not conform, then

there is concern that (possibly) only 70 percent of the planned

reusable modules may actually be integrated into the as-built

system, resulting in the need to custom engineer the remaining

30 percent of components.

 This general condition can be refined in the following manner:

 Subcondition 1. Certain reusable components were developed

by a third party with no knowledge of internal design

standards.

 Subcondition 2. The design standard for component interfaces

has not been solidified and may not conform to certain existing

reusable components.

 Subcondition 3. Certain reusable components have been

implemented in a language that is not supported on the target

environment.

Risk Mitigation, Monitoring, and Management (RMMM):
 To assist the project team in developing a strategy for dealing

with risk. An effective strategy must consider three issues:

o Risk mitigation

o Risk monitoring

o Risk management and contingency planning

 If a software team adopts a proactive (practical) approach to

risk, avoidance is always the best strategy. This is achieved by

developing a plan for risk mitigation.

 To mitigate this risk, project management must develop a

strategy for reducing turnover. Among the possible steps to be

taken are:

• Meet with current staff to determine causes for turnover

(e.g., poor working conditions, low pay, and competitive

job market).

• Moderate those causes that are under the control before

the project starts.

• Organize project teams so that information about each

development activity is widely dispersed.

• Define documentation standards

• Conduct peer reviews of all work

• Assign a backup staff member for every critical

technologist.

Risk monitoring:

 As the project proceeds, risk monitoring activities commence.

The project manager monitors factors that may provide an

indication of whether the risk is becoming more or less likely.

The following factors can be monitored:

 General attitude of team members based on project

pressures.

 The degree to which the team has worked together.

 Interpersonal relationships among team members.

 Potential problems with compensation and benefits.

 The availability of jobs within the company and outside it.

Risk management and contingency planning:

 Risk management and contingency planning assumes that

mitigation efforts have failed and that the risk has become a

reality.

 Continuing the example, the project is well underway and a

number of people announce that they will be leaving. If the

mitigation strategy has been followed, backup is available,

information is documented, and knowledge has been dispersed

across the team.

 In addition, the project manager may temporarily refocus

resources (and read just the project schedule) to those functions

that are fully staffed, enabling newcomers who must be added

to the team to ―get up to speed.‖

 Those individuals who are leaving are asked to stop all work

and spend their last weeks in ―knowledge transfer mode.‖

 This might include video-based knowledge capture, the

development of ―commentary documents,‖ and/or meeting with

other team members who will remain on the project.

 It is important to note that RMMM steps invite additional

project cost.

 For example, spending the time to "backup" every critical

technologist costs money.

 Part of risk management, therefore, is to evaluate when the

benefits increased by the RMMM steps are outweighed by the

costs associated with implementing them.

 The work performed during earlier risk analysis steps will help

the planner to determine which of the risks reside in that 20

percent (e.g., risks that lead to the highest risk exposure).

 For this reason, some of the risks identified, assessed, and
projected may not make it into the RMMM plan—they don't fall

into the critical 20 percent (the risks with highest project
priority).

Software Quality:
Software quality product is defined in term of its fitness of purpose. That is,
a quality product does precisely what the users want it to do. For software

products, the fitness of use is generally explained in terms of satisfaction of
the requirements laid down in the SRS document. Although "fitness of

purpose" is a satisfactory interpretation of quality for many devices such as
a car, a table fan, a grinding machine, etc.for software products, "fitness of
purpose" is not a wholly satisfactory definition of quality.

Example: Consider a functionally correct software product. That is, it
performs all tasks as specified in the SRS document. But, has an almost
unusable user interface. Even though it may be functionally right, we

cannot consider it to be a quality product.
The modern view of a quality associated with a software product

several quality methods such as the following:
Portability: A software device is said to be portable, if it can be freely made
to work in various operating system environments, in multiple machines,

with other software products, etc. categories of users can easily invoke the
functions of the product.

Reusability: A software product has excellent reusability if different
modules of the product can quickly be reused to develop new products.
Correctness: A software product is correct if various requirements as

specified in the SRS document have been correctly implemented.
Maintainability: A software product is maintainable if bugs can be easily
corrected as and when they show up, new tasks can be easily added to the

product, and the functionalities of the product can be easily modified, etc.

Software Quality Management System
A quality management system is the principal methods used by

organizations to provide that the products they develop have the desired
quality.
A quality system subsists of the following:

Managerial Structure and Individual Responsibilities: A quality system is
the responsibility of the organization as a whole. However, every
organization has a sever quality department to perform various quality

system activities. The quality system of an arrangement should have the
support of the top management. Without help for the quality system at a

high level in a company, some members of staff will take the quality system
seriously.
Quality System Activities: The quality system activities encompass the

following:
Auditing of projects

Review of the quality system
Development of standards, methods, and guidelines, etc.
Production of documents for the top management summarizing the

effectiveness of the quality system in the organization.
Software Quality Assurance (SQA) is simply a way to assure quality in the
software. It is the set of activities which ensure processes, procedures as

well as standards are suitable for the project and implemented correctly.
Software Quality Assurance is a process which works parallel to

development of software. It focuses on improving the process of

development of software so that problems can be prevented before they
become a major issue. Software Quality Assurance is a kind of Umbrella

activity that is applied throughout the software process.
Software Quality Assurance has:

1. A quality management approach
2. Formal technical reviews
3. Multi testing strategy

4. Effective software engineering technology
5. Measurement and reporting mechanism

Major Software Quality Assurance Activities:

1. SQA Management Plan:
Make a plan for how you will carry out the sqa through out the project.
Think about which set of software engineering activities are the best for

project. check level of sqa team skills.

2. Set The Check Points:
SQA team should set checkpoints. Evaluate the performance of the
project on the basis of collected data on different check points.

3. Multi testing Strategy:

Do not depend on a single testing approach. When you have a lot of

testing approaches available use them.

4. Measure Change Impact:
The changes for making the correction of an error sometimes re
introduces more errors keep the measure of impact of change on project.

Reset the new change to change check the compatibility of this fix with
whole project.

5. Manage Good Relations:
In the working environment managing good relations with other teams

involved in the project development is mandatory. Bad relation of sqa
team with programmers team will impact directly and badly on project.
Don’t play politics.

Benefits of Software Quality Assurance (SQA):

1. SQA produces high quality software.
2. High quality application saves time and cost.

3. SQA is beneficial for better reliability.
4. SQA is beneficial in the condition of no maintenance for a long time.
5. High quality commercial software increase market share of company.

6. Improving the process of creating software.
7. Improves the quality of the software.

Disadvantage of SQA:
There are a number of disadvantages of quality assurance. Some of them

include adding more resources, employing more workers to help maintain
quality and so much more.

Evolution of Quality Management System
Quality systems have increasingly evolved over the last five decades. Before
World War II, the usual function to produce quality products was to inspect

the finished products to remove defective devices. Since that time, quality
systems of organizations have undergone through four steps of evolution, as
shown in the fig. The first product inspection task gave method to quality

control (QC).
Quality control target not only on detecting the defective devices and
removes them but also on determining the causes behind the defects. Thus,

quality control aims at correcting the reasons for bugs and not just rejecting
the products. The next breakthrough in quality methods was the

development of quality assurance methods.
The primary premise of modern quality assurance is that if an organization's
processes are proper and are followed rigorously, then the products are

obligated to be of good quality. The new quality functions include guidance
for recognizing, defining, analyzing, and improving the production process.

Total quality management (TQM) advocates that the procedure followed by
an organization must be continuously improved through process
measurements. TQM goes stages further than quality assurance and aims at

frequently process improvement. TQM goes beyond documenting steps to
optimizing them through a redesign. A term linked to TQM is Business
Process Reengineering (BPR).

BPR aims at reengineering the method business is carried out in an
organization. From the above conversation, it can be stated that over the

years, the quality paradigm has changed from product assurance to process
assurance, as shown in fig.

ISO 9000 Certification
ISO (International Standards Organization) is a group or consortium of 63
countries established to plan and fosters standardization. ISO declared its

9000 series of standards in 1987. It serves as a reference for the contract
between independent parties. The ISO 9000 standard determines the
guidelines for maintaining a quality system. The ISO standard mainly

addresses operational methods and organizational methods such as
responsibilities, reporting, etc. ISO 9000 defines a set of guidelines for the
production process and is not directly concerned about the product itself.

Types of ISO 9000 Quality Standards

The ISO 9000 series of standards is based on the assumption that if a

proper stage is followed for production, then good quality products are

bound to follow automatically. The types of industries to which the various
ISO standards apply are as follows.

1. ISO 9001: This standard applies to the organizations engaged in
design, development, production, and servicing of goods. This is the

standard that applies to most software development organizations.
2. ISO 9002: This standard applies to those organizations which do not

design products but are only involved in the production. Examples of

these category industries contain steel and car manufacturing
industries that buy the product and plants designs from external
sources and are engaged in only manufacturing those products.

Therefore, ISO 9002 does not apply to software development
organizations.

3. ISO 9003: This standard applies to organizations that are involved
only in the installation and testing of the products. For example, Gas
companies.

How to get ISO 9000 Certification?
An organization determines to obtain ISO 9000 certification applies to ISO
registrar office for registration. The process consists of the following stages:

1. Application: Once an organization decided to go for ISO certification,

it applies to the registrar for registration.
2. Pre-Assessment: During this stage, the registrar makes a rough

assessment of the organization.

3. Document review and Adequacy of Audit: During this stage, the
registrar reviews the document submitted by the organization and

suggest an improvement.
4. Compliance Audit: During this stage, the registrar checks whether

the organization has compiled the suggestion made by it during the

review or not.

5. Registration: The Registrar awards the ISO certification after the
successful completion of all the phases.

6. Continued Inspection: The registrar continued to monitor the
organization time by time.

