
Introduction to Compiling: 
Module -I 

1.1 INTRODUCTION OF LANGUAGE PROCESSING SYSTEM  

 
Fig 1.1: Language Processing System 

Preprocessor  

A preprocessor produce input to compilers. They may perform the following functions. 

1. Macro processing: A preprocessor may allow a user to define macros that are short hands for 
longer constructs.  

2. File inclusion: A preprocessor may include header files into the program text.  
3. Rational preprocessor: these preprocessors augment older languages with more modern flow-of-

control and data structuring facilities.  
4. Language Extensions: These preprocessor attempts to add capabilities to the language by certain 

amounts to build-in macro  
 
COMPILER  
 
Compiler is a translator program that translates a program written in (HLL) the source program and 
translate it into an equivalent program in (MLL) the target program. As an important part of a
compiler is error showing to the programmer.  
 

 
Fig 1.2: Structure of Compiler 

 



Executing a program written n HLL programming language is basically of two parts. the source 
program must first be compiled translated into a object program. Then the results object program is 
loaded into a memory executed.  

 
Fig 1.3: Execution process of source program in Compiler 

 
ASSEMBLER 
Programmers found it difficult to write or read programs in machine language. They begin to use a 
mnemonic (symbols) for each machine instruction, which they would subsequently translate into 
machine language. Such a mnemonic machine language is now called an assembly language. 
Programs known as assembler were written to automate the translation of assembly language in to 
machine language. The input to an assembler program is called source program, the output is a 
machine language translation (object program).  

INTERPRETER 
An interpreter is a program that appears to execute a source program as if it were machine language.  

 
Fig1.4: Execution in Interpreter 

 
Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA also uses 
interpreter. The process of interpretation can be carried out in following phases.  
1. Lexical analysis  
2. Synatx analysis  
3. Semantic analysis  
4. Direct Execution  
 
Advantages:  
Modification of user program can be easily made and implemented as execution proceeds.  
Type of object that denotes a various may change dynamically.  
Debugging a program and finding errors is simplified task for a program used for interpretation.  
The interpreter for the language makes it machine independent. 
Disadvantages:  
The execution of the program is slower.  
Memory consumption is more.  
 
LOADER AND LINK-EDITOR:  

Once the assembler procedures an object program, that program must be placed into memory and 
executed. The assembler could place the object program directly in memory and transfer control to it, 



thereby causing the machine language program to be execute. This would waste core by leaving the 
assembler in memory while the user’s program was being executed. Also the programmer would 
have to retranslate his program with each execution, thus wasting translation time. To over come this 
problems of wasted translation time and memory. System programmers developed another 
component called loader  
“A loader is a program that places programs into memory and prepares them for execution.” It would 
be more efficient if subroutines could be translated into object form the loader could”relocate” 
directly behind the user’s program. The task of adjusting programs o they may be placed in arbitrary 
core locations is called relocation. Relocation loaders perform four functions. 

1.2 TRANSLATOR  
A translator is a program that takes as input a program written in one language and produces as 
output a program in another language. Beside program translation, the translator performs another 
very important role, the error-detection. Any violation of d HLL specification would be detected and 
reported to the programmers. Important role of translator are:  
1 Translating the HLL program input into an equivalent ml program.  
2 Providing diagnostic messages wherever the programmer violates specification of the HLL.  

1.3 LIST OF COMPILERS  
1. Ada compilers  
2 .ALGOL compilers  
3 .BASIC compilers  
4 .C# compilers  
5 .C compilers  
6 .C++ compilers  
7 .COBOL compilers  
8 .Common Lisp compilers  
9. ECMAScript interpreters  
10. Fortran compilers  
11 .Java compilers  
12. Pascal compilers  
13. PL/I compilers  
14. Python compilers  
15. Smalltalk compilers  

1.4 STRUCTURE OF THE COMPILER DESIGN  

Phases of a compiler: A compiler operates in phases. A phase is a logically interrelated operation 
that takes source program in one representation and produces output in another representation. The 
phases of a compiler are shown in below  
There are two phases of compilation.  

a. Analysis (Machine Independent/Language Dependent)  
b. Synthesis(Machine Dependent/Language independent)  

Compilation process is partitioned into no-of-sub processes called ‘phases’.  
Lexical Analysis:-  
LA or Scanners reads the source program one character at a time, carving the source program into a 
sequence of automic units called tokens. 



Fig 1.5: Phases of Compiler 
 
Syntax Analysis:-  
The second stage of translation is called Syntax analysis or parsing. In this phase expressions, 
statements, declarations etc… are identified by using the results of lexical analysis. Syntax analysis is 
aided by using techniques based on formal grammar of the programming language. 

Intermediate Code Generations:-  
An intermediate representation of the final machine language code is produced. This phase bridges 
the analysis and synthesis phases of translation.  
 
Code Optimization :-  
This is optional phase described to improve the intermediate code so that the output runs faster and 
takes less space.  
 
Code Generation:-  
The last phase of translation is code generation. A number of optimizations to reduce the length of 
machine language program are carried out during this phase. The output of the code generator is 
the machine language program of the specified computer.  
 



Table Management (or) Book-keeping:- This is the portion to keep the names used by the 
program and records essential information about each. The data structure used to record this 
information called a ‘Symbol Table’.  

Error Handlers:-  
It is invoked when a flaw error in the source program is detected. The output of LA is a stream of 
tokens, which is passed to the next phase, the syntax analyzer or parser. The SA groups the tokens 
together into syntactic structure called as expression. Expression may further be combined to form 
statements. The syntactic structure can be regarded as a tree whose leaves are the token called as
parse trees. 
 
The parser has two functions. It checks if the tokens from lexical analyzer, occur in pattern that are 
permitted by the specification for the source language. It also imposes on tokens a tree-like structure 
that is used by the sub-sequent phases of the compiler.  
 
Example, if a program contains the expression A+/B after lexical analysis this expression might 
appear to the syntax analyzer as the token sequence id+/id. On seeing the /, the syntax analyzer 
should detect an error situation, because the presence of these two adjacent binary operators violates 
the formulations rule of an expression. Syntax analysis is to make explicit the hierarchical structure 
of the incoming token stream by identifying which parts of the token stream should be grouped.  

Example, (A/B*C has two possible interpretations.)  
1, divide A by B and then multiply by C or  
2, multiply B by C and then use the result to divide A. 
each of these two interpretations can be represented in terms of a parse tree.  

Intermediate Code Generation:-  
The intermediate code generation uses the structure produced by the syntax analyzer to create a 
stream of simple instructions. Many styles of intermediate code are possible. One common style uses 
instruction with one operator and a small number of operands. The output of the syntax analyzer is 
some representation of a parse tree. the intermediate code generation phase transforms this parse tree 
into an intermediate language representation of the source program.  

Code Optimization  
This is optional phase described to improve the intermediate code so that the output runs faster and 
takes less space. Its output is another intermediate code program that does the some job as the 
original, but in a way that saves time and / or spaces.  

a.  Local Optimization:-  
There are local transformations that can be applied to a program to make an improvement. For 
example,  

If A > B goto L2  



Goto L3  
L2 :  

This can be replaced by a single statement  
If A < B goto L3  

Another important local optimization is the elimination of common sub-expressions  
A := B + C + D  
E := B + C + F  

Might be evaluated as  
 

T1 := B + C  
A := T1 + D  
E := T1 + F  

Take this advantage of the common sub-expressions B + C.  
 
b. Loop Optimization:-  
Another important source of optimization concerns about increasing the speed of loops. A 
typical loop improvement is to move a computation that produces the same result each time 
around the loop to a point, in the program just before the loop is entered.  

 
Code generator :-  
Code Generator produces the object code by deciding on the memory locations for data, selecting 
code to access each datum and selecting the registers in which each computation is to be done. Many 
computers have only a few high speed registers in which computations can be performed quickly. A 
good code generator would attempt to utilize registers as efficiently as possible.  
 
Table Management OR Book-keeping :-  
A compiler needs to collect information about all the data objects that appear in the source program. 
The information about data objects is collected by the early phases of the compiler-lexical and 
syntactic analyzers. The data structure used to record this information is called as Symbol Table.  
 
Error Handing :-  
One of the most important functions of a compiler is the detection and reporting of errors in the 
source program. The error message should allow the programmer to determine exactly where the 
errors have occurred. Errors may occur in all or the phases of a compiler.  
 
Whenever a phase of the compiler discovers an error, it must report the error to the error handler, 
which issues an appropriate diagnostic msg. Both of the table-management and error-Handling 
routines interact with all phases of the compiler. 
 
 
 
 
 
 
 
 
 



Example: 

 
Fig 1.6: Compilation Process of a source code through phases 



2. A simple One Pass Compiler: 

2.0 INTRODUCTION: In computer programming, a one-pass compiler is a compiler that 
passes through the parts of each compilation unit only once, immediately translating each part
into its final machine code. This is in contrast to a multi-pass compiler which converts the
program into one or more intermediate representations in steps between source code and 
machine code, and which reprocesses the entire compilation unit in each sequential pass. 

2.1 OVERVIEW 

• Language Definition
o Appearance of programming language : 

Vocabulary : Regular expression 
Syntax : Backus-Naur Form(BNF) or Context Free Form(CFG) 

o Semantics : Informal language or some examples 

 

• Fig 2.1. Structure of our compiler front end 

2.2 SYNTAX DEFINITION 

• To specify the syntax of a language : CFG and BNF 
o Example : if-else statement in C has the form of statement → if ( expression )

statement else statement 
• An alphabet of a language is a set of symbols. 

o Examples : {0,1} for a binary number system(language)={0,1,100,101,...}  
{a,b,c} for language={a,b,c, ac,abcc..} 
{if,(,),else ...} for a if statements={if(a==1)goto10, if--} 

• A string over an alphabet 
o is a sequence of zero or more symbols from the alphabet. 
o Examples : 0,1,10,00,11,111,0202 ... strings for a alphabet {0,1} 
o Null string is a string which does not have any symbol of alphabet. 

• Language 
o Is a subset of all the strings over a given alphabet. 
o Alphabets Ai  Languages Li for Ai 

A0={0,1}  L0={0,1,100,101,...} 
A1={a,b,c}  L1={a,b,c, ac, abcc..} 
A2={all of C tokens} L2= {all sentences of C program } 

• Example 2.1. Grammar for expressions consisting of digits and plus and minus 
signs. 

o Language of expressions L={9-5+2, 3-1, ...} 
o The productions of grammar for this language L are: 



list → list + digit 
list → list - digit 
list → digit 
digit → 0|1|2|3|4|5|6|7|8|9 

o list, digit : Grammar variables, Grammar symbols 
o 0,1,2,3,4,5,6,7,8,9,-,+ : Tokens, Terminal symbols 

• Convention specifying grammar 
o Terminal symbols : bold face string if, num, id 
o Nonterminal symbol, grammar symbol : italicized names, list, digit ,A,B 

• Grammar G=(N,T,P,S) 
o N : a set of nonterminal symbols 
o T : a set of terminal symbols, tokens 
o P : a set of production rules 
o S : a start symbol, S∈N
o 

• Grammar G for a language L={9-5+2, 3-1, ...} 
o G=(N,T,P,S) 

N={list,digit} 
T={0,1,2,3,4,5,6,7,8,9,-,+} 
P :  list -> list + digit 

list -> list - digit 
list -> digit 
digit -> 0|1|2|3|4|5|6|7|8|9 

S=list 

• Some definitions for a language L and its grammar G 
• Derivation : 

A sequence of replacements S⇒α1⇒α2⇒…⇒αn is a derivation of αn. 
Example, A derivation 1+9 from the grammar G 

• left most derivation 
list ⇒ list + digit ⇒ digit + digit ⇒ 1 + digit ⇒ 1 + 9 

• right most derivation 
list ⇒ list + digit ⇒ list + 9 ⇒ digit + 9 ⇒ 1 + 9 

• Language of grammar L(G) 
L(G) is a set of sentences that can be generated from the grammar G. 
L(G)={x| S ⇒* x} where x ∈ a sequence of terminal symbols 

• Example: Consider a grammar G=(N,T,P,S): 
N={S} T={a,b} 
S=S P ={S → aSb | ε } 

• is aabb a sentecne of L(g)? (derivation of string aabb) 
S⇒aSb⇒aaSbb⇒aaεbb⇒aabb(or S⇒* aabb) so, aabbεL(G) 

• there is no derivation for aa, so aa∉L(G) 
• note L(G)={anbn| n≧0} where anbn meas n a's followed by n b's. 

• Parse Tree 



A derivation can be conveniently represented by a derivation tree( parse tree). 
o The root is labeled by the start symbol. 
o Each leaf is labeled by a token or ε. 
o Each interior none is labeled by a nonterminal symbol. 
o When a production A→x1… xn is derived, nodes labeled by x1… xn are made as 

children 
nodes of node labeled by A. 

• root : the start symbol 
• internal nodes : nonterminal
• leaf nodes : terminal 

o Example G: 
list -> list + digit | list - digit | digit 
digit -> 0|1|2|3|4|5|6|7|8|9 

• left most derivation for 9-5+2, 
list ⇒ list+digit ⇒ list-digit+digit ⇒ digit-digit+digit ⇒ 9-digit+digit 

⇒ 9-5+digit ⇒ 9-5+2 
• right most derivation for 9-5+2, 

list ⇒ list+digit ⇒ list+2 ⇒ list-digit+2 ⇒ list-5+2 
⇒ digit-5+2 ⇒ 9-5+2 

parse tree for 9-5+2 

 

Fig 2.2. Parse tree for 9-5+2 according to the grammar in Example 

Ambiguity 
• A grammar is said to be ambiguous if the grammar has more than one parse tree for a 

given string of tokens. 
• Example 2.5. Suppose a grammar G that can not distinguish between lists and digits as in 

Example 2.1. 
• G : string → string + string | string - string |0|1|2|3|4|5|6|7|8|9 



 
Fig 2.3. Two Parse tree for 9-5+2 

• 1-5+2 has 2 parse trees => Grammar G is ambiguous. 

Associativity of operator
A operator is said to be left associative if an operand with operators on both sides of it is 
taken by the operator to its left. 
eg) 9+5+2≡(9+5)+2, a=b=c≡a=(b=c) 
• Left Associative Grammar : 

list → list + digit | list - digit 
digit →0|1|…|9 

• Right Associative Grammar : 
right → letter = right | letter 
letter → a|b|…|z 

 

 Fig 2.4. Parse tree left- and right-associative operators. 

Precedence of operators 
We say that a operator(*) has higher precedence than other operator(+) if the operator(*) takes 
operands before other operator(+) does. 

• ex. 9+5*2≡9+(5*2), 9*5+2≡(9*5)+2 
• left associative operators : + , - , * , / 
• right associative operators : = , ** 



• Syntax of full expressions 
operator  associative  precedence 

+ , -  left  1 low 
* , /  left  2 heigh 

• expr → expr + term | expr - term | term 
term → term * factor | term / factor | factor 
factor → digit | ( expr ) 
digit → 0 | 1 | … | 9 

• Syntax of statements 
o stmt → id = expr ; 

| if ( expr ) stmt ; 
| if ( expr ) stmt else stmt ; 
| while ( expr ) stmt ; 

expr → expr + term | expr - term | term 
term → term * factor | term / factor | factor 
factor → digit | ( expr ) 
digit → 0 | 1 | … | 9 

2.3 SYNTAX-DIRECTED TRANSLATION(SDT) 
A formalism for specifying translations for programming language constructs. 
( attributes of a construct: type, string, location, etc) 

• Syntax directed definition(SDD) for the translation of constructs 
• Syntax directed translation scheme(SDTS) for specifying translation 

Postfix notation for an expression E
• If E is a variable or constant, then the postfix nation for E is E itself ( E.t≡E ). 
• if E is an expression of the form E1 op E2 where op is a binary operator 

o E1' is the postfix of E1, 
o E2' is the postfix of E2 
o then E1' E2' op is the postfix for E1 op E2 

• if E is (E1), and E1' is a postfix 
then E1' is the postfix for E 

eg)  9 - 5 + 2 ⇒ 9 5 - 2 + 

9 - (5 + 2) ⇒ 9 5 2 + - 
 

Syntax-Directed Definition(SDD) for translation 
• SDD is a set of semantic rules predefined for each productions respectively for 

translation. 
• A translation is an input-output mapping procedure for translation of an input X, 

o construct a parse tree for X. 
o synthesize attributes over the parse tree. 



 Suppose a node n in parse tree is labeled by X and X.a denotes the value 
of attribute a of X at that node. 

 compute X's attributes X.a using the semantic rules associated with X. 

Example 2.6. SDD for infix to postfix translation 

 

 Fig 2.5. Syntax-directed definition for infix to postfix translation. 

An example of synthesized attributes for input X=9-5+2 

 

  Fig 2.6. Attribute values at nodes in a parse tree. 

Syntax-directed Translation Schemes(SDTS) 
• A translation scheme is a context-free grammar in which program fragments called 

translation actions are embedded within the right sides of the production. 
productions(postfix)  SDD for postfix to 

infix notation  
SDTS 

list → list + term list.t = list.t || term.t || "+"  list → list + term 
{print("+")} 

• {print("+");} : translation(semantic) action. 
• SDTS generates an output for each sentence x generated by underlying grammar by 

executing actions in the order they appear during depth-first traversal of a parse tree for x. 



1. Design translation schemes(SDTS) for translation 
2. Translate : 

a) parse the input string x and 
b) emit the action result encountered during the depth-first traversal of parse tree. 

 

Fig 2.7. Example of a depth-first traversal of a tree. Fig 2.8. An extra leaf is constructed for a semantic action. 

Example 2.8. 
• SDD vs. SDTS for infix to postfix translation. 

productions  SDD  SDTS 
expr → list + term 
expr → list + term 
expr → term 
term → 0 
term → 1 
…
term → 9 

expr.t = list.t || term.t || "+" 
expr.t = list.t || term.t || "-" 
expr.t = term.t 
term.t = "0" 
term.t = "1" 
… 
term.t = "9" 

expr → list + term 
printf{"+")} 
expr → list + term printf{"-")} 
expr → term 
term → 0 printf{"0")} 
term → 1 printf{"1")} 
… 

term → 9 printf{"0")} 

• Action translating for input 9-5+2 

 
Fig 2.9. Actions translating 9-5+2 into 95-2+. 

1) Parse.
2) Translate. 
Do we have to maintain the whole parse tree ? 
No, Semantic actions are performed during parsing, and we don't need the nodes (whose 
semantic actions done). 



2.4 PARSING
if token string x ∈ L(G), then parse tree 

else error message 
Top-Down parsing 

1. At node n labeled with nonterminal A, select one of the productions whose left part is 
A and construct children of node n with the symbols on the right side of that production. 
2. Find the next node at which a sub-tree is to be constructed. 
ex. G: type → simple 

|↑id 
|array [ simple ] of type 

simple → integer 
|char 
|num dotdot num 

Fig 2.10. Top-down parsing while scanning the input from left to right. 



 
 Fig 2.11. Steps in the top-down construction of a parse tree. 

• The selection of production for a nonterminal may involve trial-and-error. => 
backtracking 

• G : { S->aSb | c | ab } 
According to topdown parsing procedure, acb , aabb∈L(G)? 

• S/acb⇒aSb/acb⇒aSb/acb⇒aaSbb/acb ⇒ X 
        (S→aSb)        move  (S→aSb)         backtracking 

⇒aSb/acb⇒acb/acb⇒acb/acb⇒acb/acb 
(s→c)       move               move 

so, acb∈ L(G) 
Is is finished in 7 steps including one backtracking. 
 

• S/aabb⇒aSb/aabb⇒aSb/aabb⇒aaSbb/aabb⇒aaSbb/aabb⇒aaaSbbb/aabb ⇒ X 
         (S→aSb)              move             (S→aSb)                 move                       (S→aSb)               backtracking 

    ⇒aaSbb/aabb⇒aacbb/aabb ⇒ X 
(S→c)                 backtracking 

   ⇒aaSbb/aabb⇒aaabbb/aabb⇒ X 
(S→ab)           backtracking 

   ⇒aaSbb/aabb⇒ X 
backtracking 

⇒aSb/aabb⇒acb/aabb 
(S→c)   bactracking 

⇒aSb/aabb⇒aabb/aabb⇒aabb/aabb⇒aabb/aabb⇒aaba/aabb 
(S→ab)   move      move   move 

so, aabb∈L(G) 
but process is too difficult. It needs 18 steps including 5 backtrackings. 



• procedure of top-down parsing 
let a pointed grammar symbol and pointed input symbol be g, a respectively. 

o if( g ∈ N ) select and expand a production whose left part equals to g next to 
current production. 
else if( g = a ) then make g and a be a symbol next to current symbol. 
else if( g ≠a ) back tracking 

 let the pointed input symbol a be the symbol that moves back to steps 
same with the number of current symbols of underlying production 

 eliminate the right side symbols of current production and let the pointed 
symbol g be the left side symbol of current production. 

Predictive parsing (Recursive Decent Parsing,RDP) 
• A strategy for the general top-down parsing 

Guess a production, see if it matches, if not, backtrack and try another. 
⇒ 

• It may fail to recognize correct string in some grammar G and is tedious in processing. 
⇒ 

• Predictive parsing 
o is a kind of top-down parsing that predicts a production whose derived terminal 

symbol is equal to next input symbol while expanding in top-down paring. 
o without backtracking. 
o Procedure decent parser is a kind of predictive parser that is implemented by 

disjoint recursive procedures one procedure for each nonterminal, the procedures 
are patterned after the productions. 

• procedure of predictive parsing(RDP)
let a pointed grammar symbol and pointed input symbol be g, a respectively. 

o if( g ∈ N ) 
 select next production P whose left symbol equals to g and a set of first

terminal symbols of derivation from the right symbols of the production P 
includes a input symbol a. 

 expand derivation with that production P. 
o else if( g = a ) then make g and a be a symbol next to current symbol. 
o else if( g ≠a ) error 

• G : { S→aSb | c | ab } => G1 : { S->aS' | c S'->Sb | ab } 
According to predictive parsing procedure, acb , aabb∈L(G)? 

o S/acb⇒ confused in { S→aSb, S→ab } 
o so, a predictive parser requires some restriction in grammar, that is, there should 

be only one production whose left part of productions are A and each first 
terminal symbol of those productions have unique terminal symbol. 

• Requirements for a grammar to be suitable for RDP: For each nonterminal either 
1. A → Bα, or 
2. A → a1α1 | a2α2 | … | anαn 

1)  for 1 ≦ i, j ≦ n and i≠ j, ai ≠ aj 
2)  A ε may also occur if none of ai can follow A in a derivation and if we have A→ε 



• If the grammar is suitable, we can parse efficiently without backtrack. 
General top-down parser with backtracking 

↓
Recursive Descent Parser without backtracking 

↓
Picture Parsing ( a kind of predictive parsing ) without backtracking 

Left Factoring 
• If a grammar contains two productions of form 

S→ aα and S → aβ 
it is not suitable for top down parsing without backtracking. Troubles of this form can 
sometimes be removed from the grammar by a technique called the left factoring. 

• In the left factoring, we replace { S→ aα, S→ aβ } by 
{ S → aS', S'→ α, S'→ β } cf. S→ a(α|β) 
(Hopefully α and β start with different symbols) 

• left factoring for G { S→aSb | c | ab } 
S→aS' | c  cf. S(=aSb | ab | c = a ( Sb | b) | c ) → a S' | c
S'→Sb | b 

• A concrete example: 
<stmt> → IF <boolean> THEN <stmt> | 

IF <boolean> THEN <stmt> ELSE <stmt> 
is transformed into 

<stmt>→  IF <boolean> THEN <stmt> S' 
S' →  ELSE <stmt> | ε 

• Example, 
o for G1 : { S→aSb | c | ab }
According to predictive parsing procedure, acb , aabb∈L(G)? 

 S/aabb⇒ unable to choose {  S→aSb, S→ab ?} 
o According for the feft factored gtrammar G1, acb , aabb∈L(G)? 

G1 : { S→aS'|c S'→Sb|b} <= {S=a(Sb|b) | c } 
o S/acb⇒aS'/acb⇒aS'/acb ⇒ aSb/acb ⇒ acb/acb ⇒ acb/acb⇒ acb/acb 

       (S→aS')           move           (S'→Sb⇒aS'b) (S'→c)          move                 move 

so, acb∈ L(G) 
It needs only 6 steps whithout any backtracking. 
cf. General top-down parsing needs 7 steps and I backtracking. 

o S/aabb⇒aS'/aabb⇒aS'/aabb⇒aSb/aabb⇒aaS'b/aabb⇒aaS'b/aabb⇒aabb/aabb⇒ ⇒ 
          (S→aS')            move     (S'→Sb⇒aS'b)      (S'→aS')                  move                  (S'→b)           move move 

so, aabb∈L(G) 
but, process is finished in 8 steps without any backtracking. 
cf. General top-down parsing needs 18 steps including 5 backtrackings. 

 
Left Recursion 
• A grammar is left recursive iff it contains a nonterminal A, such that 

A⇒+ Aα, where is any string. 
o Grammar {S→ Sα | c} is left recursive because of S⇒Sα 
o Grammar {S→ Aα, A→ Sb | c} is also left recursive because of S⇒Aα⇒ Sbα 

• If a grammar is left recursive, you cannot build a predictive top down parser for it. 



1) If a parser is trying to match S & S→Sα, it has no idea how many times S must be 
applied 

2) Given a left recursive grammar, it is always possible to find another grammar that 
generates the same language and is not left recursive. 

3) The resulting grammar might or might not be suitable for RDP. 

• After this, if we need left factoring, it is not suitable for RDP. 
• Right recursion: Special care/Harder than left recursion/SDT can handle. 

Eliminating Left Recursion 
Let G be S→ S A | A 
Note that a top-down parser cannot parse the grammar G, regardless of the order the productions 
are tried. 
⇒ The productions generate strings of form AA…A 
⇒ They can be replaced by S→A  S' and S'→A  S'|ε 

Example : 
• A → Aα∣ β

=> 
A → βR 
R → αR | ε 

  
 
 

Fig 2.12. Left-and right-recursive ways of generating a string.

• In general, the rule is that 
o If A→ Aα1 | Aα2 | … | Aαn and 

A→ β1 | β2 | … | βm (no βi's start with A), 
then, replace by 
A → β1R | β2R| … | βmR and 
Z → α1R | α2R | … | αnR | ε 

Exercise: Remove the left recursion in the following grammar: 
expr → expr + term | expr - term 
expr → term 

solution:
expr → term rest 
rest → + term rest | - term rest | ε 



2.5 A TRANSLATOR FOR SIMPLE EXPRESSIONS 
• Convert infix into postfix(polish notation) using SDT. 
• Abstract syntax (annotated parse tree) tree vs. Concrete syntax tree 

 

• Concrete syntax tree : parse tree. 
• Abstract syntax tree: syntax tree 
• Concrete syntax : underlying grammar 

Adapting the Translation Scheme 
• Embed the semantic action in the production 
• Design a translation scheme 
• Left recursion elimination and Left factoring 
• Example 

3) Design a translate scheme and eliminate left recursion 
E→ E + T {'+'} 
E→ E - T {'-'} 
E→ T {} 
T→ 0{'0'}|…|9{'9'} 

E→ T {} R 
R→ + T{'+'} R 
R→ - T{'-'} R 
R→ ε 
T→ 0{'0'}…|9{'9'} 

4)Translate of a input string 9-5+2 : parsing and SDT 

Result: 9 5 – 2 + 



Example of translator design and execution 
• A translation scheme and with left-recursion. 

Initial specification for infix-to-postfix 
translator  

with left recursion eliminated

expr → expr + term {printf{"+")} 
expr → expr - term {printf{"-")} 
expr → term 
term → 0 {printf{"0")} 
term → 1 {printf{"1")} 
…
term → 9 {printf{"0")} 

expr → term rest 
rest → + term {printf{"+")} rest 
rest → - term {printf{"-")} rest 
rest → ε 
term → 0 {printf{"0")} 
term → 1 {printf{"1")} 
… 
term → 9 {printf{"0")} 

 
Fig 2.13. Translation of 9 – 5 +2 into 95-2+. 

 
Procedure for the Nonterminal expr, term, and rest 

 

Fig 2.14. Function for the nonterminals expr, rest, and term. 



Optimizer and Translator 

 
 
2.6 LEXICAL ANALYSIS 
• reads and converts the input into a stream of tokens to be analyzed by parser. 
• lexeme : a sequence of characters which comprises a single token. 
• Lexical Analyzer →Lexeme / Token → Parser 
Removal of White Space and Comments 
• Remove white space(blank, tab, new line etc.) and comments 
Contsants 
• Constants: For a while, consider only integers 
• eg) for input 31 + 28, output(token representation)?

input : 31 + 28 
output: <num, 31> <+, > <num, 28> 

num + :token 
31 28 : attribute, value(or lexeme) of integer token num 

Recognizing 
• Identifiers 

o Identifiers are names of variables, arrays, functions... 
o A grammar treats an identifier as a token. 
o eg) input : count = count + increment; 

output : <id,1> <=, > <id,1> <+, > <id, 2>; 
Symbol table 
tokens  attributes(lexeme) 

 
0
1
2
3

id 
id 
 

count 
increment 
 

• Keywords are reserved, i.e., they cannot be used as identifiers. 



Then a character string forms an identifier only if it is no a keyword. 
• punctuation symbols 

o operators : + - * / := < > … 
 
Interface to lexical analyzer 

 
Fig 2.15. Inserting a lexical analyzer between the input and the parser 

A Lexical Analyzer 

 

Fig 2.16. Implementing the interactions in Fig. 2.15. 

• c=getchcar(); ungetc(c,stdin); 
• token representation 

o #define NUM 256 
• Function lexan() 

eg) input string 76 + a 
input , output(returned value) 
76 NUM,  tokenval=76 (integer) 
+ + 
A id ,  tokeval="a" 

• A way that parser handles the token NUM returned by laxan() 
o consider a translation scheme 

factor → ( expr ) 
| num { print(num.value) } 

#define NUM 256 



...
factor() { 

if(lookahead == '(' ) { 
match('('); exor(); match(')'); 

} else if (lookahead == NUM) { 
printf(" %f ",tokenval); match(NUM); 

} else error(); 
} 

• The implementation of function lexan 
1)  #include <stdio.h> 
2)  #include <ctype.h> 
3)  int lino = 1; 
4)  int tokenval = NONE; 
5)  int lexan() { 
6)  int t; 
7)  while(1) { 
8) t = getchar(); 
9) if ( t==' ' || t=='\t' ) ; 
10) else if ( t=='\n' ) lineno +=1; 
11) else if (isdigit(t)) { 
12) tokenval = t -'0'; 
13) t = getchar(); 
14) while ( isdigit(t)) { 
15)  tokenval = tokenval*10 + t - '0'; 
16) t =getchar(); 
17)  } 
18)  ungetc(t,stdin); 
19)  retunr NUM;
20) } else { 
21) tokenval = NONE; 
22) return t; 
23)  } 
24)  } 
25)  } 

2.7 INCORPORATION A SYMBOL TABLE 
• The symbol table interface, operation, usually called by parser. 

o insert(s,t): input s: lexeme 
t: token 

output index of new entry 
o lookup(s): input s: lexeme 

output index of the entry for string s, or 0 if s is not found in the symbol 
table. 

• Handling reserved keywords 
1. Inserts all keywords in the symbol table in advance. 

ex) insert("div", div) 



insert("mod", mod) 
2. while parsing 
• whenever an identifier s is encountered. 

if (lookup(s)'s token in {keywords} ) s is for a keyword; else s is for a identifier; 

• example 
o preset 

insert("div",div); 
insert("mod",mod); 

o while parsing 
lookup("count")=>0 insert("count",id); 
lookup("i") =>0 insert("i",id); 
lookup("i") =>4, id 
llokup("div")=>1,div 

 
Fig 2.17. Symbol table and array for storing strings. 

2.8 ABSTRACT STACK MACHINE 
o An abstract machine is for intermediate code generation/execution. 
o Instruction classes: arithmetic / stack manipulation / control flow 

• 3 components of abstract stack machine 
1) Instruction memory : abstract machine code, intermediate code(instruction) 
2) Stack 
3) Data memory 

• An example of stack machine operation. 
o for a input (5+a)*b, intermediate codes : push 5 rvalue 2 .... 



L-value and r-value 
• l-values a : address of location a 
• r-values a : if a is location, then content of location a 

if a is constant, then value a 
• eg) a :=5 + b; 

lvalue a⇒2 r value 5 ⇒ 5 r value of b ⇒ 7 

Stack Manipulation 
• Some instructions for assignment operation 

o push v : push v onto the stack. 
o rvalue a : push the contents of data location a. 
o lvalue a : push the address of data location a. 
o pop : throw away the top element of the stack. 
o := : assignment for the top 2 elements of the stack. 
o copy : push a copy of the top element of the stack. 

Translation of Expressions 
• Infix expression(IE) → SDD/SDTS → Abstact macine codes(ASC) of postfix expression for 

stack machine evaluation. 
eg) 

o IE: a + b, (⇒PE: a b + ) ⇒ IC: rvalue a 
rvalue b
+

o day := (1461 * y) div 4 + (153 * m + 2) div 5 + d 
(⇒ day 1462 y * 4 div 153 m * 2 + 5 div + d + :=) 
⇒ 1) lvalue day 6) div 11) push 5 16) :=
2) push 1461 7) push 153  12) div 
3) rvalue y 8) rvalue m 13) + 
4) *  9) push 2  14) rvalue d 
5) push 4  10) +  15) + 

• A translation scheme for assignment-statement into abstract astack machine code e can be 
expressed formally In the form as follows: 

stmt → id := expr 
{ stmt.t := 'lvalue' || id.lexeme || expr.t || ':=' } 

eg) day :=a+b ⇒ lvalue day rvalue a rvalue b + := 



Control Flow 
• 3 types of jump instructions : 

o Absolute target location 
o Relative target location( distance :Current ↔Target) 
o Symbolic target location(i.e. the machine supports labels) 

• Control-flow instructions: 
o label a: the jump's target a 
o goto a: the next instruction is taken from statement labeled a 
o gofalse a: pop the top & if it is 0 then jump to a 
o gotrue a: pop the top & if it is nonzero then jump to a 
o halt : stop execution

Translation of Statements 
• Translation scheme for translation if-statement into abstract machine code. 

stmt → if expr then stmt1 
{ out := newlabel1) 
stmt.t := expr.t || 'gofalse' out || stmt1.t || 'label' out } 

 
 Fig 2.18. Code layout for conditional and while statements.  

• Translation scheme for while-statement ? 

Emitting a Translation 
• Semantic Action(Tranaslation Scheme): 

1. stmt → if 
expr { out := newlabel; emit('gofalse', out) } 
then 
stmt1 { emit('label', out) } 

2. stmt → id { emit('lvalue', id.lexeme) } 
:= 
expr { emit(':=') } 

3. stmt → i
expr { out := newlabel; emit('gofalse', out) } 
then 
stmt1 { emit('label', out) ; out1 := newlabel; emit('goto', out`1); } 



else 
stmt2 { emit('label', out1) ; } 
if(expr==false) goto out 
stmt1 goto out1 

out : stmt2 
out1: 

Implementation 
• procedure stmt() 
• var test,out:integer; 
• begin 

o if lookahead = id then begin 
 emit('lvalue',tokenval); match(id); 

match(':='); expr(); emit(':='); 
o end 
o else if lookahead = 'if' then begin

 match('if'); 
 expr(); 
 out := newlabel(); 
 emit('gofalse', out);
 match('then'); 
 stmt;
 emit('label', out) 

o end 
o else error(); 

• end 

Control Flow with Analysis 
• if E1 or E2 then S vs if E1 and E2 then S 

E1 or E2 = if E1 then true else E2 
E1 and E2 = if E1 then E2 else false 

• The code for E1 or E2. 
o Codes for E1 Evaluation result: e1 
o copy 
o gotrue OUT 
o pop
o Codes for E2 Evaluation result: e2 
o label OUT

• The full code for if E1 or E2 then S ; 
o codes for E1 
o copy 
o gotrue OUT1 
o pop
o codes for E2 
o label OUT1



o gofalse OUT2 
o code for S 
o label OUT2

• Exercise: How about if E1 and E2 then S; 
o if E1 and E2 then S1 else S2; 

2.9 Putting the techniques together! 
• infix expression ⇒ postfix expression 

eg) id+(id-id)*num/id ⇒ id id id - num * id / 
+ 

Description of the Translator 
• Syntax directed translation scheme 

(SDTS) to translate the infix expressions 
into the postfix expressions,  

Fig 2.19. Specification for infix-to-postfix translation

Structure of the translator, 

 
Fig 2.19. Modules of infix to postfix translator. 

o global header file "header.h" 

The Lexical Analysis Module lexer.c 
o Description of tokens 

+ - * / DIV MOD ( ) ID NUM DONE 



 
Fig 2.20. Description of tokens. 

The Parser Module parser.c

SDTS  
|| ← left recursion elimination 
New SDTS 

 

Fig 2.20. Specification for infix to postfix translator & syntax directed translation scheme after 
eliminating left-recursion. 



The Emitter Module emitter.c 
emit (t,tval) 

The Symbol-Table Modules symbol.c and init.c 
Symbol.c 
data structure of symbol table Fig 2.29 p62 
insert(s,t) 
lookup(s) 

The Error Module error.c 
Example of execution 

input 12 div 5 + 2 
output 12 

5
div 
2
+ 



3. Lexical Analysis: 

3.1 OVER VIEW OF LEXICAL ANALYSIS  
• To identify the tokens we need some method of describing the possible tokens that can 

appear in the input stream. For this purpose we introduce regular expression, a notation
that can be used to describe essentially all the tokens of programming language.  

• Secondly , having decided what the tokens are, we need some mechanism to recognize
these in the input stream. This is done by the token recognizers, which are designed using
transition diagrams and finite automata.  

3.2 ROLE OF LEXICAL ANALYZER  
The LA is the first phase of a compiler. It main task is to read the input character and produce as 
output a sequence of tokens that the parser uses for syntax analysis. 

 

Fig. 3.1: Role of Lexical analyzer 

Upon receiving a ‘get next token’ command form the parser, the lexical analyzer reads
the input character until it can identify the next token. The LA return to the parser representation 
for the token it has found. The representation will be an integer code, if the token is a simple
construct such as parenthesis, comma or colon.  

LA may also perform certain secondary tasks as the user interface. One such task is 
striping out from the source program the commands and white spaces in the form of blank, tab 
and new line characters. Another is correlating error message from the compiler with the source
program. 

3.3 TOKEN, LEXEME, PATTERN: 
Token: Token is a sequence of characters that can be treated as a single logical entity. 
Typical tokens are, 
1) Identifiers 2) keywords 3) operators 4) special symbols 5)constants 
Pattern: A set of strings in the input for which the same token is produced as output. This set 
of strings is described by a rule called a pattern associated with the token. 
Lexeme: A lexeme is a sequence of characters in the source program that is matched by the 
pattern for a token. 



 

Fig. 3.2: Example of Token, Lexeme and Pattern 

3.4. LEXICAL ERRORS:  
Lexical errors are the errors thrown by your lexer when unable to continue. Which means that
there's no way to recognise a lexeme as a valid token for you lexer. Syntax errors, on the other
side, will be thrown by your scanner when a given set of already recognised valid tokens don't
match any of the right sides of your grammar rules. simple panic-mode error handling system
requires that we return to a high-level parsing function when a parsing or lexical error is
detected.  

Error-recovery actions are:  
i. Delete one character from the remaining input.  
ii. Insert a missing character in to the remaining input.  
iii. Replace a character by another character.  
iv. Transpose two adjacent characters.  

 
3.5. REGULAR EXPRESSIONS  
Regular expression is a formula that describes a possible set of string. Component of regular
expression..  

X  the character x  
. any character, usually accept a new line  
[x y z]  any of the characters x, y, z, …..  
R?  a R or nothing (=optionally as R)  
R*  zero or more occurrences…..  
R+  one or more occurrences ……  
R1R2  an R1 followed by an R2  
R1|R1  either an R1 or an R2.  

A token is either a single string or one of a collection of strings of a certain type. If we view the
set of strings in each token class as an language, we can use the regular-expression notation to
describe tokens.  
Consider an identifier, which is defined to be a letter followed by zero or more letters or digits.
In regular expression notation we would write.  
Identifier = letter (letter | digit)*  



Here are the rules that define the regular expression over alphabet .  
• is a regular expression denoting { € }, that is, the language containing only the empty 

string.  
• For each ‘a’ in Σ, is a regular expression denoting { a }, the language with only one string

consisting of the single symbol ‘a’ .  
• If R and S are regular expressions, then  

(R) | (S) means L(r) U L(s)  
R.S means L(r).L(s)  
R* denotes L(r*) 

3.6. REGULAR DEFINITIONS  
For notational convenience, we may wish to give names to regular expressions and to define
regular expressions using these names as if they were symbols.  
Identifiers are the set or string of letters and digits beginning with a letter. The following regular
definition provides a precise specification for this class of string.  
Example-1,  

Ab*|cd? Is equivalent to (a(b*)) | (c(d?))  
Pascal identifier  

Letter - A | B | ……| Z | a | b |……| z|  
Digits - 0 | 1 | 2 | …. | 9  
Id - letter (letter / digit)* 

Recognition of tokens:  
We learn how to express pattern using regular expressions. Now, we must study how to take the
patterns for all the needed tokens and build a piece of code that examins the input string and
finds a prefix that is a lexeme matching one of the patterns.  

Stmt →if expr then stmt  
           | If expr then else stmt  
           | є  
Expr →term relop term  
            | term  
Term →id  
             |number  

For relop ,we use the comparison operations of languages like Pascal or SQL where = is “equals”
and < > is “not equals” because it presents an interesting structure of lexemes.  
The terminal of grammar, which are if, then , else, relop ,id and numbers are the names of tokens
as far as the lexical analyzer is concerned, the patterns for the tokens are described using regular
definitions.  

digit → [0,9] 
digits →digit+  
number →digit(.digit)?(e.[+-]?digits)?  
letter → [A-Z,a-z]  
id →letter(letter/digit)*  
if → if  
then →then  



else →else  
relop →< | > |<= | >= | = = | < >  

In addition, we assign the lexical analyzer the job stripping out white space, by recognizing the
“token” we defined by:  

WS → (blank/tab/newline)+  
Here, blank, tab and newline are abstract symbols that we use to express the ASCII characters of
the same names. Token ws is different from the other tokens in that ,when we recognize it, we do 
not return it to parser ,but rather restart the lexical analysis from the character that follows the
white space . It is the following token that gets returned to the parser. 

Lexeme Token Name Attribute Value 
Any WS - - 

if if - 
then then - 
else else -

Any id Id Pointer to table entry 
Any number number Pointer to table entry 

< relop LT 
<= relop LE 
== relop EQ 
<> relop NE 

3.7. TRANSITION DIAGRAM:  
Transition Diagram has a collection of nodes or circles, called states. Each state represents a 
condition that could occur during the process of scanning the input looking for a lexeme that
matches one of several patterns .  
Edges are directed from one state of the transition diagram to another. each edge is labeled by a
symbol or set of symbols.  
If we are in one state s, and the next input symbol is a, we look for an edge out of state s labeled
by a. if we find such an edge ,we advance the forward pointer and enter the state of the transition
diagram to which that edge leads.  
Some important conventions about transition diagrams are  

1. Certain states are said to be accepting or final .These states indicates that a lexeme has 
been found, although the actual lexeme may not consist of all positions b/w the lexeme 
Begin and forward pointers we always indicate an accepting state by a double circle.  

2. In addition, if it is necessary to return the forward pointer one position, then we shall 
additionally place a * near that accepting state.  

3. One state is designed the state ,or initial state ., it is indicated by an edge labeled “start”
entering from nowhere .the transition diagram always begins in the state before any input
symbols have been used. 



 

Fig. 3.3: Transition diagram of Relational operators 

As an intermediate step in the construction of a LA, we first produce a stylized flowchart,
called a transition diagram. Position in a transition diagram, are drawn as circles and are
called as states. 

 

Fig. 3.4: Transition diagram of Identifier 

The above TD for an identifier, defined to be a letter followed by any no of letters or digits.A
sequence of transition diagram can be converted into program to look for the tokens specified 
by the diagrams. Each state gets a segment of code. 

3.8. FINITE AUTOMATON  
• A recognizer for a language is a program that takes a string x, and answers “yes” if x is a

sentence of that language, and “no” otherwise. 
• We call the recognizer of the tokens as a finite automaton. 
• A finite automaton can be: deterministic (DFA) or non-deterministic (NFA) 
• This means that we may use a deterministic or non-deterministic automaton as a lexical

analyzer. 
• Both deterministic and non-deterministic finite automaton recognize regular sets. 
• Which one? 

– deterministic – faster recognizer, but it may take more space 
– non-deterministic – slower, but it may take less space 
– Deterministic automatons are widely used lexical analyzers. 

• First, we define regular expressions for tokens; Then we convert them into a DFA to get a
lexical analyzer for our tokens. 



3.9. Non-Deterministic Finite Automaton (NFA) 
• A non-deterministic finite automaton (NFA) is a mathematical model that consists of: 

o S - a set of states 
o Σ - a set of input symbols (alphabet) 
o move - a transition function move to map state-symbol pairs to sets of states. 
o s0 - a start (initial) state 
o F- a set of accepting states (final states) 

• ε- transitions are allowed in NFAs. In other words, we can move from one state to 
another one without consuming any symbol. 

• A NFA accepts a string x, if and only if there is a path from the starting state to one of
accepting states such that edge labels along this path spell out x. 

Example: 

 

3.10. Deterministic Finite Automaton (DFA) 

• A Deterministic Finite Automaton (DFA) is a special form of a NFA. 
• No state has ε- transition 
• For each symbol a and state s, there is at most one labeled edge a leaving s. i.e. transition 

function is from pair of state-symbol to state (not set of states) 

Example: 



 

3.11. Converting RE to NFA 
• This is one way to convert a regular expression into a NFA. 
• There can be other ways (much efficient) for the conversion. 
• Thomson’s Construction is simple and systematic method. 
• It guarantees that the resulting NFA will have exactly one final state, and one start state. 
• Construction starts from simplest parts (alphabet symbols). 
• To create a NFA for a complex regular expression, NFAs of its sub-expressions are 

combined to create its NFA. 
• To recognize an empty string ε: 

 
• To recognize a symbol a in the alphabet Σ: 

 
• For regular expression r1 | r2: 

 
N(r1) and N(r2) are NFAs for regular expressions r1 and r2. 



• For regular expression r1 r2 

 
Here, final state of N(r1) becomes the final state of N(r1r2). 

• For regular expression r* 

 
Example: 
For a RE (a|b) * a, the NFA construction is shown below. 

 

3.12. Converting NFA to DFA (Subset Construction) 
We merge together NFA states by looking at them from the point of view of the input characters: 

• From the point of view of the input, any two states that are connected by an –transition
may as well be the same, since we can move from one to the other without consuming
any character. Thus states which are connected by an -transition will be represented by
the same states in the DFA. 

• If it is possible to have multiple transitions based on the same symbol, then we can regard
a transition on a symbol as moving from a state to a set of states (ie. the union of all those
states reachable by a transition on the current symbol). Thus these states will be
combined into a single DFA state. 

To perform this operation, let us define two functions: 
• The -closure function takes a state and returns the set of states reachable from it based on 

(one or more) -transitions. Note that this will always include the state itself. We should be 
able to get from a state to any state in its -closure without consuming any input. 

• The function move takes a state and a character, and returns the set of states reachable by 
one transition on this character. 



We can generalise both these functions to apply to sets of states by taking the union of the 
application to individual states. 

For Example, if A, B and C are states, move({A,B,C},`a') = move(A,`a') move(B,`a')
move(C,`a'). 
The Subset Construction Algorithm is a follows: 

put ε-closure({s0}) as an unmarked state into the set of DFA (DS) 
while (there is one unmarked S1 in DS) do 

begin 
mark S1 
for each input symbol a do 

begin 
S2 ← ε-closure(move(S1,a))
if (S2 is not in DS) then 
add S2 into DS as an unmarked state 
transfunc[S1,a] ← S2 

end 
end 

• a state S in DS is an accepting state of DFA if a state in S is an accepting state of NFA
• the start state of DFA is ε-closure({s0}) 

3.13. Lexical Analyzer Generator 

3.18. Lex specifications: 
A Lex program (the .l file ) consists of three parts:  

declarations  
%%  
translation rules  
%%  
auxiliary procedures  



1. The declarations section includes declarations of variables,manifest constants(A manifest
constant is an identifier that is declared to represent a constant e.g. # define PIE 3.14),
and regular definitions.  

2. The translation rules of a Lex program are statements of the form :  

p1 {action 1}  
p2 {action 2}  
p3 {action 3}  
… …  
… …  

Where, each p is a regular expression and each action is a program fragment describing
what action the lexical analyzer should take when a pattern p matches a lexeme. In Lex
the actions are written in C.  

3. The third section holds whatever auxiliary procedures are needed by the
actions.Alternatively these procedures can be compiled separately and loaded with the
lexical analyzer.  

Note: You can refer to a sample lex program given in page no. 109 of chapter 3 of the book:  
Compilers: Principles, Techniques, and Tools by Aho, Sethi & Ullman for more clarity. 

3.19. INPUT BUFFERING

The LA scans the characters of the source pgm one at a time to discover tokens. Because of large 
amount of time can be consumed scanning characters, specialized buffering techniques have been 
developed to reduce the amount of overhead required to process an input character.  
Buffering techniques:  

1. Buffer pairs  
2. Sentinels  

The lexical analyzer scans the characters of the source program one a t a time to discover tokens. 
Often, however, many characters beyond the next token many have to be examined before the
next token itself can be determined. For this and other reasons, it is desirable for thelexical
analyzer to read its input from an input buffer. Figure shows a buffer divided into two haves of,
say 100 characters each. One pointer marks the beginning of the token being discovered. A look 
ahead pointer scans ahead of the beginning point, until the token is discovered .we view the
position of each pointer as being between the character last read and thecharacter next to be read.
In practice each buffering scheme adopts one convention either apointer is at the symbol last
read or the symbol it is ready to read. 

 
Token beginnings look ahead pointerThe distance which the lookahead pointer may have to 
travel past the actual token may belarge. For example, in a PL/I program we may see:



DECALRE (ARG1, ARG2… ARG n) Without knowing whether DECLARE is a keyword or an 
array name until we see the character that follows the right parenthesis. In either case, the token
itself ends at the second E. If the look ahead pointer travels beyond the buffer half in which it
began, the other half must be loaded with the next characters from the source file. Since the
buffer shown in above figure is of limited size there is an implied constraint on how much look 
ahead can be used before the next token is  discovered. In the above example, ifthe look ahead
traveled to the left half and all the way through the left half to the middle, we could not reload 
the right half, because we would lose characters that had not yet been groupedinto tokens. While
we can make the buffer larger if we chose or use another buffering scheme,we cannot ignore the
fact that overhead is limited. 



SYNTAX ANALYSIS 

4.1 ROLE OF THE PARSER : 
Parser for any grammar is program that takes as input  string  w (obtain set of strings tokens 

from the lexical analyzer) and produces as output either a parse tree for w , if w is a valid 

sentences of grammar or error message indicating that  w is not a valid sentences of given 

grammar. The goal of the parser is to determine the syntactic validity of a source string is

valid, a tree is built for use by the subsequent phases of the computer. The tree reflects the 

sequence of derivations or reduction used during the parser. Hence, it is called parse tree. If 

string is invalid, the parse has to issue diagnostic message identifying the nature and cause of 

the  errors in string. Every elementary subtree  in the parse tree corresponds to a production of 

the grammar. 

There are two ways of identifying an elementry sutree: 

1. By deriving a string from a non-terminal  or  

2. By reducing a string of symbol to a non-terminal.

The two types of parsers employed are:  

a. Top down parser: which build parse trees from top(root) to 

bottom(leaves)

b. Bottom up parser: which build parse trees from leaves and work up the 

root.  

Fig . 4.1: position of parser in compiler model. 

4.2 CONTEXT FREE GRAMMARS 

Inherently recursive structures of a programming language are defined by a context-free 

Grammar.  In a context-free grammar, we have four triples G( V,T,P,S). 

Here , V is  finite set of terminals (in our case, this will be the set of tokens) 

 T is a finite set of non-terminals (syntactic-variables) 



 P is  a finite set of productions rules in the following form 

A → α where A is a non-terminal and α is a string of terminals and non-terminals 

(including the empty string) 

S is a  start symbol (one of the non-terminal symbol)

L(G) is the language of G (the language generated by G) which is a set of sentences. 

A sentence of L(G) is a string of terminal symbols of G. If S is the start symbol of G then 

⇒ω is a sentence of L(G) iff S  ω where ω is a string of terminals of G. If G is a context-

free grammar, L(G) is a context-free language. Two grammar G1 and G2 are equivalent, if 

they produce same grammar. 

Consider the production of the form S ⇒ α,  If α contains non-terminals, it is called as a 

sentential form of G. If α does not contain non-terminals, it is called as a sentence of G. 

4.2.1 Derivations 

In general a derivation step is 

αA ⇒β  αγβ is sentential form and  if there is a production rule A→γ in our grammar. 

where α and β are arbitrary strings of terminal and non-terminal symbols α1 ⇒ α2 ⇒ ... ⇒ 

αn (αn derives from α1 or α1 derives αn ). There are two types of derivaion 

1 At each derivation step, we can choose any of the non-terminal in the sentential form of G 

for the replacement. 

2 If we always choose the left-most non-terminal in each derivation step, this derivation is 

called as left-most derivation. 

Example: 
E → E + E | E – E | E * E | E / E | - E 
E → ( E ) 
E → id 

Leftmost derivation : 

E → E + E 

→ E * E+E →id* E+E→id*id+E→id*id+id 

The string is derive from the grammar w= id*id+id, which is consists of all terminal 

symbols 

Rightmost derivation 

E → E + E 

→ E+E * E→E+ E*id→E+id*id→id+id*id 

Given grammar G : E → E+E | E*E | ( E ) | - E | id  

Sentence to be derived : – (id+id) 



LEFTMOST DERIVATION  RIGHTMOST DERIVATION

E → - E  E → - E 

E → - ( E )  E → - ( E ) 

E → - ( E+E )  E → - (E+E ) 

E → - ( id+E )  E → - ( E+id ) 

E → - ( id+id ) E → - ( id+id ) 

• String that appear in leftmost derivation are called left sentinel forms. 

• String that appear in rightmost derivation are called right sentinel forms. 

Sentinels: 
• Given a grammar G with start symbol S, if S → α , where α may contain non-

terminals or terminals, then α is called the sentinel form of G. 

Yield or frontier of tree: 
• Each interior node of a parse tree is a non-terminal. The children of node can be a 

terminal or non-terminal of the sentinel forms that are read from left to right. The 

sentinel form in the parse tree is called yield or frontier of the tree. 

4.2.2 PARSE TREE

• Inner nodes of a parse tree are non-terminal symbols. 

• The leaves of a parse tree are terminal symbols. 

• A parse tree can be seen as a graphical representation of a derivation. 

 

 

Ambiguity: 

A grammar that produces more than one parse for some sentence is said to be ambiguous 

grammar. 



Example : Given grammar G : E → E+E | E*E | ( E ) | - E | id 

The sentence id+id*id has the following two distinct leftmost derivations: 

E → E+ E  E → E* E 

E → id + E  E → E + E * E 

E → id + E * E  E → id + E * E 

E → id + id * E  E → id + id * E 

E → id + id * id E → id + id * id 

The two corresponding parse trees are : 

 
Example: 

To disambiguate the grammar E → E+E | E*E | E^E | id | (E), we can use precedence of 

operators as follows: 

^ (right to left) 

/,* (left to right) 

-,+ (left to right) 

We get the following unambiguous grammar: 

E → E+T | T 

T → T*F | F 

F → G^F | G 

G → id | (E) 

Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other 

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the 

following 



Two parse trees for leftmost derivation : 

To eliminate ambiguity, the following grammar may be used: 

stmt → matched_stmt | unmatched_stmt 

matched_stmt → if expr then matched_stmt else matched_stmt | other 

unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt 

Eliminating Left Recursion:

A grammar is said to be left recursive if it has a non-terminal A such that there is a derivation 

A=>Aα for some string α. Top-down parsing methods cannot handle left-recursive grammars. 

Hence, left recursion can be eliminated as follows: 



If there is a production A → Aα | β it can be replaced with a sequence of two 
productions 

A → βA’ 
A’ → αA’ | ε 

Without changing the set of strings derivable from A. 

Example : Consider the following grammar for arithmetic expressions: 

E → E+T | T 

T → T*F | F 

F → (E) | id 

First eliminate the left recursion for E as 

E → TE’ 

E’ → +TE’ | ε 

Then eliminate for T as 

T → FT’ 

T’→ *FT’ | ε 

Thus the obtained grammar after eliminating left recursion is 

E → TE’ 

E’ → +TE’ | ε 

T → FT’ 

T’ → *FT’ | ε 

F → (E) | id 

Algorithm to eliminate left recursion:

1. Arrange the non-terminals in some order A1, A2 . . . An. 

2. for i := 1 to n do begin 

for j := 1 to i-1 do begin 

replace each production of the form Ai → Aj γ 

by the productions Ai → δ1 γ | δ2γ | . . . | δk γ 

where Aj→ δ1 | δ2 | . . . | δk are all the current Aj-productions;

end

eliminate the immediate left recursion among the Ai-productions 

end 

 

 

 

 



Left factoring:

Left factoring is a grammar transformation that is useful for producing a grammar suitable for 

predictive parsing. When it is not clear which of two alternative productions to use to expand 

a non-terminal A, we can rewrite the A-productions to defer the decision until we have seen 

enough of the input to make the right choice. 

If there is any production A → αβ1 | αβ2 , it can be rewritten as 

A → αA’ 

A’ → β1 | β2 

Consider the grammar , G : S→ iEtS | iEtSeS | a 

E → b 

Left factored, this grammar becomes

S → iEtSS’ | a 

S’ → eS | ε 

E → b 

TOP-DOWN PARSING 

It can be viewed as an attempt to find a left-most derivation for an input string or an 

attempt to construct a parse tree for the input starting from the root to the leaves. 

Types of top-down parsing : 

1. Recursive descent parsing 

2. Predictive parsing

1. RECURSIVE DESCENT PARSING

� Recursive descent parsing is one of the top-down parsing techniques that uses a set of 

recursive procedures to scan its input. 

� This parsing method may involve backtracking, that is, making repeated scans of the 

input. 

Example for backtracking : 

Consider the grammar G : S→ cAd 

   A → ab | a 

and the input string w=cad. 

The parse tree can be constructed using the following top-down approach :

Step1:

Initially create a tree with single node labeled S. An input pointer points to ‘c’, the first 

symbol of w. Expand the tree with the production of S.



 
Step2: 

The leftmost leaf ‘c’ matches the first symbol of w, so advance the input pointer to the second 

symbol of w ‘a’ and consider the next leaf ‘A’. Expand A using the first alternative. 

 
Step3: 

The second symbol ‘a’ of w also matches with second leaf of tree. So advance the input 

pointer to third symbol of w ‘d’. But the third leaf of tree is b which does not match with the 

input symbol d. 

Hence discard the chosen production and reset the pointer to second position. This is called 

backtracking. 

Step4: 

Now try the second alternative for A. 

 
Now we can halt and announce the successful completion of parsing. 



Example for recursive decent parsing: 

A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop. 

Hence, elimination of left-recursion must be done before parsing. 

Consider the grammar for arithmetic expressions 

E → E+T | T 

T → T*F | F 

F → (E) | id 

After eliminating the left-recursion the grammar becomes, 

E → TE’ 

E’ → +TE’ | ε 

T → FT’ 

T’ → *FT’ | ε 

F → (E) | id 

Now we can write the procedure for grammar as follows: 

Recursive procedure: 

Procedure E() 

begin 

T( ); 

EPRIME( ); 

End 

Procedure EPRIME( ) 

begin 

If input_symbol=’+’ then 

ADVANCE( ); 

T( ); 

EPRIME( ); 

end 

Procedure T( ) 

begin 

F( );

TPRIME( ); 

End 



Procedure TPRIME( ) 

begin 

If input_symbol=’*’ then 

ADVANCE( ); 

F( );

TPRIME( ); 

end 

Procedure F( ) 

begin 

If input-symbol=’id’ then 

ADVANCE( ); 

else if input-symbol=’(‘ then 

ADVANCE( ); 

E( ); 

else if input-symbol=’)’ then 

ADVANCE( ); 

end 

else ERROR( ); 

Stack implementation: 

PROCEDURE INPUT STRING 

E( ) id+id*id 
T( ) id+id*id 

F( ) id+id*id 
ADVANCE( ) id+id*id 

TPRIME( ) id+id*id

EPRIME( ) id+id*id 

ADVANCE( ) id+id*id 

T( ) id+id*id 

F( ) id+id*id 

ADVANCE( ) id+id*id 

TPRIME( ) id+id*id 

ADVANCE( ) id+id*id 

F( ) id+id*id 

ADVANCE( ) id+id*id 

TPRIME( ) id+id*id 



2. PREDICTIVE PARSING 

� Predictive parsing is a special case of recursive descent parsing where no 

backtracking is required. 

� The key problem of predictive parsing is to determine the production to be applied 

for a non-terminal in case of alternatives. 

Non-recursive predictive parser 

 
 

The table-driven predictive parser has an input buffer, stack, a parsing table and an output 

stream. 

Input buffer: 

It consists of strings to be parsed, followed by $ to indicate the end of the input string. 

Stack: 

It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack. 

Initially, the stack contains the start symbol on top of $. 

Parsing table: 

It is a two-dimensional array M[A, a], where ‘A’ is a non-terminal and ‘a’ is a terminal. 

Predictive parsing program: 

The parser is controlled by a program that considers X, the symbol on top of stack, and a, the 

current input symbol. These two symbols determine the parser action. There are three 

possibilities: 

1. If X = a = $, the parser halts and announces successful completion of parsing. 

2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to 

the next input symbol. 

3. If X is a non-terminal , the program consults entry M[X, a] of the parsing table 

M. This entry will either be an X-production of the grammar or an error entry. 



If M[X, a] = {X → UVW},the parser replaces X on top of the stack by UVW 

If M[X, a] = error, the parser calls an error recovery routine. 

Algorithm for nonrecursive predictive parsing: 

Input : A string w and a parsing table M for grammar G. 

Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication. 

Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ 

in the input buffer. The program that utilizes the predictive parsing table M to produce a parse 

for the input is as follows: 

set ip to point to the first symbol of w$; 

repeat 

let X be the top stack symbol and a the symbol pointed to by ip;

if X is a terminal or $ then 

if X = a then 

pop X from the stack and advance ip 

else error() 

else /* X is a non-terminal */ 

if M[X, a] = X →Y1Y2 … Yk then begin 

pop X from the stack; 

push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top; 

output the production X → Y1 Y2 . . . Yk 

end 

else error() 

until X = $ 

Predictive parsing table construction: 

The construction of a predictive parser is aided by two functions associated with a grammar 

G :

1. FIRST

2. FOLLOW 

Rules for first( ): 

1. If X is terminal, then FIRST(X) is {X}. 

2. If X → ε is a production, then add ε to FIRST(X).

3. If X is non-terminal and X → aα is a production then add a to FIRST(X). 



4. If X is non-terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X) if for 
some i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 
=> ε. If ε is in FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X). 

Rules for follow( ): 
1. If S is a start symbol, then FOLLOW(S) contains $. 

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in 
follow(B). 

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then 
everything in FOLLOW(A) is in FOLLOW(B). 

Algorithm for construction of predictive parsing table: 
Input : Grammar G 
Output : Parsing table M 
Method : 
1. For each production A → α of the grammar, do steps 2 and 3. 
2. For each terminal a in FIRST(α), add A → α to M[A, a]. 
3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in 

FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $]. 
4. Make each undefined entry of M be error. 

Example: 

Consider the following grammar : 

E → E+T | T 

T→ T*F | F

F → (E) | id 

After eliminating left-recursion the grammar is 

E → TE’ 

E’ → +TE’ | ε 

T → FT’ 

T’ → *FT’ | ε 

F → (E) | id 

First( ) : 

FIRST(E) = { ( , id} 

FIRST(E’) ={+ , ε }

FIRST(T) = { ( , id} 

FIRST(T’) = {*, ε } 

FIRST(F) = { ( , id } 

Follow( ): 

FOLLOW(E) = { $, ) } 

FOLLOW(E’) = { $, ) } 



FOLLOW(T) = { +, $, ) } 

FOLLOW(T’) = { +, $, ) } 

FOLLOW(F) = {+, * , $ , ) } 

LL(1) grammar: 

The parsing table entries are single entries. So each location has not more than one entry. 
This type of grammar is called LL(1) grammar. 
Consider this following grammar: 
S → iEtS | iEtSeS | a 
E → b 



After eliminating left factoring, we have
S→ iEtSS’ | a
S’→ eS | ε
E→ b
To construct a parsing table, we need FIRST() and FOLLOW() for all the non-terminals.
FIRST(S) = { i, a }
FIRST(S’) = {e, ε }
FIRST(E) = { b}
FOLLOW(S) = { $ ,e }
FOLLOW(S’) = { $ ,e }
FOLLOW(E) = {t}

Since there are more than one production, the grammar is not LL(1) grammar. 
Actions performed in predictive parsing: 
1. Shift 
2. Reduce
3. Accept 
4. Error 
Implementation of predictive parser: 
1. Elimination of left recursion, left factoring and ambiguous grammar.
2. Construct FIRST() and FOLLOW() for all non-terminals. 
3. Construct predictive parsing table. 
4. Parse the given input string using stack and parsing table. 

BOTTOM-UP PARSING 
Constructing a parse tree for an input string beginning at the leaves and going towards the 
root is called bottom-up parsing. 
A general type of bottom-up parser is a shift-reduce parser. 

SHIFT-REDUCE PARSING 
Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a parse tree for 
an input string beginning at the leaves (the bottom) and working up towards the root (the 
top). 
Example: 
Consider the grammar: 
S → aABe 
A → Abc | b 
B → d 
The sentence to be recognized is abbcde. 
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INTRODUCTION

The front end translates a source program into an intermediate representation from which

the back end generates target code.

Benefits of using a machine-independent intermediate form are:

1.   Retargeting is facilitated. That is, a compiler for a different machine can be created by

attaching a back end for the new machine to an existing front end.

2.   A machine-independent code optimizer can be applied to the intermediate representation.

Position of intermediate code generator

intermediate

code

INTERMEDIATE LANGUAGES

Three ways of intermediate representation:

 Syntax tree

 Postfix notation

 Three address code

The semantic rules for generating three-address code from common programming language

constructs are similar to those for constructing syntax trees or for generating postfix notation.

Graphical Representations:

Syntax tree:

A syntax tree depicts the natural hierarchical structure of a source program. A dag

(Directed Acyclic Graph) gives the same information but in a more compact way because

common subexpressions are identified. A syntax tree and dag for the assignment statement a : =

b * - c + b * - c are as follows:

parser static

checker

intermediate

code generator

code

generator

MODULE-4   INTERMEDIATE CODE GENERATION



assign assign

a                    + a +

*                           * *

b               uminus   b                uminus b                 uminus

c                              c c

(a) Syntax tree (b) Dag

Postfix notation:

Postfix notation is a linearized representation of a syntax tree; it is a list of the nodes of

the tree in which a node appears immediately after its children. The postfix notation for the

syntax tree given above is

a b c uminus * b c uminus *  +  assign

Syntax-directed definition:

Syntax trees for assignment statements are produced by the syntax-directed definition.

Non-terminal S generates an assignment statement. The two binary operators + and * are

examples of the full operator set in a typical language. Operator associativities and precedences

are the usual ones, even though they have not been put into the grammar. This definition

constructs the tree from the input a : = b * - c + b* - c.

PRODUCTION SEMANTIC RULE

S  id : = E                 S.nptr : = mknode(‘assign’,mkleaf(id, id.place), E.nptr)

E  E1 + E2 E.nptr : = mknode(‘+’, E1.nptr, E2.nptr )

E  E1 * E2 E.nptr : = mknode(‘*’, E1.nptr, E2.nptr )

E  - E1 E.nptr : = mknode(‘uminus’, E1.nptr)

E  ( E1 ) E.nptr : = E1.nptr

E  id E.nptr : = mkleaf( id, id.place )

Syntax-directed definition to produce syntax trees for assignment statements



The token id has an attribute place that points to the symbol-table entry for the identifier.

A symbol-table entry can be found from an attribute id.name, representing the lexeme associated

with that occurrence of id. If  the  lexical analyzer holds all lexemes in a single array of

characters, then attribute name might be the index of the first character of the lexeme.

Two representations of the syntax tree are as follows. In (a) each node is represented as a

record with a field for its operator and additional fields for pointers to its children. In (b), nodes

are allocated from an array of records and the index or position of the node serves as the pointer

to the node. All the nodes in the syntax tree can be visited by following pointers, starting from

the root at position 10.

Two representations of the syntax tree

aaaaaaaaaaaaa                                                         0

1

2 2

3

4

5

6

7

8

9

10

(a) (b)

Three-Address Code:

Three-address code is a sequence of statements of the general form

x : = y op z

where x, y and z are names, constants, or compiler-generated temporaries; op stands for any

operator, such as a fixed- or floating-point arithmetic operator, or a logical operator on boolean-

valued data. Thus a source language expression like x+ y*z  might be translated into a sequence

t1 :  =  y  * z

t2 :  =  x  +  t1

where t1 and t2 are compiler-generated temporary names.

assign

id                 a

+

* *

id b id b

uminus uminus

id             c id             c

id               b

id                c

uminus          1

*                0         2

id                b

id                c

uminus          5

*                4 6

+               3          7

id              a

assign           9           8



Advantages of three-address code:

 The unraveling of complicated arithmetic expressions and of nested flow-of-control

statements makes three-address code desirable for target code generation and

optimization.

 The use of names for the intermediate values computed by a program allows three-

address code to be easily rearranged – unlike postfix notation.

Three-address code is a linearized representation of a syntax tree or a dag in which

explicit names correspond to the interior nodes of the graph. The syntax tree and dag are

represented by the three-address code sequences. Variable names can appear directly in three-

address statements.

Three-address code corresponding to the syntax tree and dag given above

t1 : = - c                                                            t1 : = -c

t2 : =   b  *  t1 t2 : = b * t1

t3 : = - c                                                           t5 : = t2 + t2

t4 : =   b  *  t3 a : = t5

t5 : =   t2 +  t4

a : =    t5

(a) Code for the syntax tree (b) Code for the dag

The reason for the term “three-address code” is that each statement usually contains three

addresses, two for the operands and one for the result.

Types of Three-Address Statements:

The common three-address statements are:

1. Assignment statements of the form x : = y op z, where op is a binary arithmetic or logical

operation.

2. Assignment instructions of the form x : = op y, where op is a unary operation. Essential unary

operations include unary minus, logical negation, shift operators, and conversion operators

that, for example, convert a fixed-point number to a floating-point number.

3. Copy statements of the form x : = y where the value of y is assigned to x.

4.  The unconditional jump goto L. The three-address statement with label L is the next to be

executed.

5. Conditional jumps such as if x relop y goto L. This instruction applies a relational operator (

<, =, >=, etc. ) to x and y, and executes the statement with label L next if x stands in relation



relop to y. If not, the three-address statement following if x relop y goto L is executed next,

as in the usual sequence.

6. param x and call p, n for procedure calls and return y, where y representing a returned value

is optional. For example,

param x1

param x2

. . .

param xn

call p,n

generated as part of a call of the procedure p(x1, x2, …. ,xn ).

7. Indexed assignments of the form x : = y[i] and x[i] : = y.

8. Address and pointer assignments of the form x : = &y , x : = *y, and *x : = y.

Syntax-Directed Translation into Three-Address Code:

When three-address code is generated, temporary names are made up for the interior

nodes of a syntax tree. For example, id : = E consists of code to evaluate E into some temporary

t, followed by the assignment id.place : = t.

Given input a : = b * - c + b * - c, the three-address code is as shown above. The

synthesized attribute S.code represents the three-address code for the assignment S.

The nonterminal E has two attributes :

1. E.place, the name that will hold the value of E , and

2. E.code, the sequence of three-address statements evaluating E.

Syntax-directed definition to produce three-address code for assignments

PRODUCTION SEMANTIC RULES

S  id : = E S.code : = E.code || gen(id.place ‘:=’ E.place)

E  E1 + E2 E.place := newtemp;

E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘+’ E2.place)

E  E1 * E2 E.place := newtemp;

E.code := E1.code || E2.code || gen(E.place ‘:=’ E1.place ‘*’ E2.place)

E  - E1 E.place := newtemp;

E.code := E1.code || gen(E.place ‘:=’ ‘uminus’ E1.place)

E  ( E1 ) E.place : = E1.place;

E.code : = E1.code

E  id E.place : = id.place;

E.code : = ‘ ‘



Semantic rules generating code for a while statement

S.begin:

E.code

if E.place = 0 goto S.after

S1.code

goto S.begin

S.after: . . .

PRODUCTION SEMANTIC RULES

S  while E do S1 S.begin := newlabel;

S.after := newlabel;

S.code := gen(S.begin ‘:’) ||

E.code ||

gen ( ‘if’ E.place ‘=’ ‘0’ ‘goto’ S.after)||

S1.code ||

gen ( ‘goto’ S.begin) ||

gen ( S.after ‘:’)

 The function newtemp returns a sequence of distinct names t1,t2,….. in response to

successive calls.

 Notation gen(x ‘:=’ y ‘+’ z) is used to represent three-address statement x := y + z.

Expressions appearing instead of variables like x, y and z are evaluated when passed to

gen, and quoted operators or operand, like ‘+’ are taken literally.

 Flow-of–control statements can be added to the language of assignments. The code for S

 while E do S1 is generated using new attributes S.begin and S.after to mark the first

statement in the code for E and the statement following the code for S, respectively.

 The function newlabel returns a new label every time it is called.

 We assume that a non-zero expression represents true; that is when the value of E

becomes zero, control leaves the while statement.

Implementation of Three-Address Statements:

A three-address statement is an abstract form of intermediate code. In a compiler,

these statements can be implemented as records with fields for the operator and the operands.

Three such representations are:



 Quadruples

 Triples

 Indirect triples

Quadruples:

 A quadruple is a record structure with four fields, which are, op, arg1, arg2 and result.

 The op field contains an internal code for the operator. The three-address statement x : =

y op z is represented by placing y in arg1, z in arg2 and x in result.

 The contents of fields arg1, arg2 and result are normally pointers to the symbol-table

entries for the names represented by these fields. If so, temporary names must be entered

into the symbol table as they are created.

Triples:

 To avoid entering temporary names into the symbol table, we might refer to a temporary

value by the position of the statement that computes it.

 If we do so, three-address statements can be represented by records with only three fields:

op, arg1 and arg2.

 The fields arg1 and arg2, for the arguments of op, are either pointers to the symbol table

or pointers into the triple structure ( for temporary values ).

 Since three fields are used, this intermediate code format is known as triples.

op arg1 arg2     result op arg1         arg2

(0)     uminus c t1 (0) uminus         c

(1)         *                  b         t1 t2 (1) * b             (0)

(2)      uminus c t3 (2) uminus         c

(3)          *                 b t3 t4 (3)        * b (2)

(4)          + t2 t4 t5 (4) + (1) (3)

(5)          : =               t3 a (5) assign           a (4)

(a) Quadruples (b) Triples

Quadruple and triple representation of three-address statements given above



A ternary operation like x[i] : = y requires two entries in the triple structure as shown as below

while x : = y[i] is naturally represented as two operations.

op          arg1      arg2 op          arg1 arg2

(0)         [ ] =           x             i (0)      = [ ]            y               i

(1)        assign        (0)         y (1)      assign x             (0)

(a) x[i] : = y                                                                         (b) x : = y[i]

Indirect Triples:

 Another implementation of three-address code is that of listing pointers to triples, rather

than listing the triples themselves. This implementation is called indirect triples.

 For example, let us use an array statement to list pointers to triples in the desired order.

Then the triples shown above might be represented as follows:

statement                                               op              arg1         arg2

(0) (14) (14) uminus c

(1) (15) (15) * b (14)

(2) (16)                                    (16) uminus c

(3) (17) (17) *                  b (16)

(4) (18)                                    (18)            +               (15) (17)

(5) (19) (19)       assign               a (18)

Indirect triples representation of three-address statements

DECLARATIONS

As the sequence of declarations in a procedure or block is examined, we can lay out

storage for names local to the procedure. For each local name, we create a symbol-table entry

with information like the type and the relative address of the storage for the name. The relative

address consists of an offset from the base of the static data area or the field for local data in an

activation record.



Declarations in a Procedure:

The syntax of languages such as C, Pascal and Fortran, allows all the declarations in a

single procedure to be processed as a group. In this case, a global variable, say offset, can keep

track of the next available relative address.

In the translation scheme shown below:

 Nonterminal P generates a sequence of declarations of the form id : T.

 Before the first declaration is considered, offset is set to 0. As each new name is seen ,

that name is entered in the symbol table with offset equal to the current value of offset,

and offset is incremented by the width of the data object denoted by that name.

 The procedure enter( name, type, offset ) creates a symbol-table entry for name, gives its

type type and relative address offset in its data area.

 Attribute type represents a type expression constructed from the basic types integer and

real by applying the type constructors pointer and array. If type expressions are

represented by graphs, then attribute type might be a pointer to the node representing a

type expression.

 The width of an array is obtained by multiplying the width of each element by the

number of elements in the array. The width of each pointer is assumed to be 4.

Computing the types and relative addresses of declared names

P  D                                                          { offset : = 0 }

D  D ; D

D  id : T                                                    { enter(id.name, T.type, offset);

offset : = offset + T.width }

T  integer { T.type : = integer;

T.width : = 4 }

T  real { T.type : = real;

T.width : = 8 }

T  array [ num ] of T1 { T.type : = array(num.val, T1.type);

T.width : = num.val X T1.width }

T  ↑ T1 { T.type : = pointer ( T1.type);

T.width : = 4 }



Keeping Track of Scope Information:

When a nested procedure is seen, processing of declarations in the enclosing procedure is

temporarily suspended. This approach will be illustrated by adding semantic rules to the

following language:

P  D

D  D ; D | id : T | proc id ; D ; S

One possible implementation of a symbol table is a linked list of entries for names.

A new symbol table is created when a procedure declaration D  proc id D1;S is seen,

and entries for the declarations in D1 are created in the new table. The new table points back to

the symbol table of the enclosing procedure; the name represented by id itself is local to the

enclosing procedure. The only change from the treatment of variable declarations is that the

procedure enter is told which symbol table to make an entry in.

For example, consider the symbol tables for procedures readarray, exchange, and

quicksort pointing back to that for the containing procedure sort, consisting of the entire

program. Since partition is declared within quicksort, its table points to that of quicksort.

Symbol tables for nested procedures

sort

to readarray

to exchange

readarray exchange quicksort

partition

header header

i

header

a

x

readarray

exchange

quicksort

nil        header

i k

v

partition

header

j



The semantic rules are defined in terms of the following operations:

1. mktable(previous) creates a new symbol table and returns a pointer to the new table. The

argument previous points to a previously created symbol table, presumably that for the

enclosing procedure.

2. enter(table, name, type, offset) creates a new entry for name name in the symbol table pointed

to by table. Again, enter places type type and relative address offset in fields within the entry.

3. addwidth(table, width) records the cumulative width of all the entries in table in the header

associated with this symbol table.

4. enterproc(table, name, newtable) creates a new entry for procedure name in the symbol table

pointed to by table. The argument newtable points to the symbol table for this procedure

name.

Syntax directed translation scheme for nested procedures

P  M D                                        { addwidth ( top( tblptr) , top (offset));

pop (tblptr); pop (offset) }

M  ɛ { t : = mktable (nil);

push (t,tblptr); push (0,offset) }

D  D1 ; D2

D  proc id ; N D1 ; S                   { t : = top (tblptr);

addwidth ( t, top (offset));

pop (tblptr); pop (offset);

enterproc (top (tblptr), id.name, t) }

D  id : T                                      { enter (top (tblptr), id.name, T.type, top (offset));

top (offset) := top (offset) + T.width }

N  ɛ { t := mktable (top (tblptr));

push (t, tblptr);  push (0,offset) }

 The stack tblptr is used to contain pointers to the tables for sort, quicksort, and partition

when the declarations in partition are considered.

 The top element of stack offset is the next available relative address for a local of the

current procedure.

 All semantic actions in the subtrees for B and C in

A  BC {actionA}

are done before actionA at the end of the production occurs. Hence, the action associated

with the marker M is the first to be done.



 The action for nonterminal M initializes stack tblptr with a symbol table for the

outermost scope, created by operation mktable(nil). The action also pushes relative

address 0 onto stack offset.

 Similarly, the nonterminal N uses the operation mktable(top(tblptr)) to create a new

symbol table. The argument top(tblptr) gives the enclosing scope for the new table.

 For each variable declaration id: T, an entry is created for id in the current symbol table.

The top of stack offset is incremented by T.width.

 When the action on the right side of D  proc id; ND1; S occurs, the width of all

declarations generated by D1 is on the top of stack offset; it is recorded using addwidth.

Stacks tblptr and offset are then popped.

At this point, the name of the enclosed procedure is entered into the symbol table of its

enclosing procedure.

ASSIGNMENT STATEMENTS

Suppose that the context in which an assignment appears is given by the following grammar.

P  M D

M  ɛ

D  D ; D  | id : T  | proc id ; N D ; S

N  ɛ

Nonterminal P becomes the new start symbol when these productions are added to those in the

translation scheme shown below.

Translation scheme to produce three-address code for assignments

S  id : = E            { p : = lookup ( id.name);

if p ≠ nil then

emit( p ‘ : =’ E.place)

else error }

E  E1 + E2 { E.place : = newtemp;

emit( E.place ‘: =’ E1.place ‘ + ‘ E2.place ) }

E  E1 * E2 { E.place : = newtemp;

emit( E.place ‘: =’ E1.place ‘ * ‘ E2.place ) }

E  - E1 { E.place : = newtemp;

emit ( E.place ‘: =’  ‘uminus’ E1.place ) }

E  ( E1 )               { E.place : = E1.place }



E  id { p : = lookup ( id.name);

if p ≠ nil then

E.place : = p

else error }

Reusing Temporary Names

 The temporaries used to hold intermediate values in expression calculations tend to

clutter up the symbol table, and space has to be allocated to hold their values.

 Temporaries can be reused by changing newtemp. The code generated by the rules for E

 E1 + E2 has the general form:

evaluate E1 into t1

evaluate E2 into t2

t : =  t1 +  t2

 The lifetimes of these temporaries are nested like matching pairs of balanced parentheses.

 Keep a count c , initialized to zero. Whenever a temporary name is used as an operand,

decrement c by 1. Whenever a new temporary name is generated, use $c and increase c

by 1.

 For example, consider the assignment x := a * b + c * d – e * f

Three-address code with stack temporaries

statement value of c

0

$0 := a * b                            1

$1 := c * d                            2

$0 := $0 + $1                        1

$1 := e * f                             2

$0 := $0 - $1                         1

x   := $0                                0

Addressing Array Elements:

Elements of an array can be accessed quickly if the elements are stored in a block of

consecutive locations. If the width of each array element is w, then the ith element of array A

begins in location

base + ( i – low ) x w

where low is the lower bound on the subscript and base is the relative address of the storage

allocated for the array. That is, base is the relative address of A[low].



The expression can be partially evaluated at compile time if it is rewritten as

i x w + ( base – low x w)

The subexpression c = base – low x w can be evaluated when the declaration of the array is seen.

We assume that c is saved in the symbol table entry for A , so the relative address of A[i] is

obtained by simply adding i x w to c.

Address calculation of multi-dimensional arrays:

A two-dimensional array is stored in of the two forms :

 Row-major (row-by-row)

 Column-major (column-by-column)

Layouts for a 2 x 3 array

first column

first row

second column

second row

third column

(a) ROW-MAJOR                            (b) COLUMN-MAJOR

In the case of row-major form, the relative address of A[ i1 , i2] can be calculated by the formula

base + ((i1 – low1) x n2 + i2 – low2) x w

where, low1 and low2 are the lower bounds on the values of i1 and i2 and n2 is the number of

values that i2 can take. That is, if high2 is the upper bound on the value of i2, then n2 = high2 –

low2 + 1.

Assuming that i1 and i2 are the only values that are known at compile time, we can rewrite the

above expression as

(( i1 x n2 ) + i2 ) x w + ( base – (( low1 x n2 ) + low2 ) x w)

Generalized formula:

The expression generalizes to the following expression for the relative address of A[i1,i2,…,ik]

(( . . . (( i1n2 + i2 ) n3 + i3) . . . ) nk + ik ) x w + base – (( . . .((low1n2 + low2)n3 + low3) . . .)

nk + lowk) x w

for all j, nj = highj – lowj + 1

A[ 1,1 ]

A[ 1,2 ]

A[ 1,3 ]

A[ 2,1 ]

A[ 2,2 ]

A[ 2,3 ]

A [ 1,1 ]

A [ 2,1 ]

A [ 1,2 ]

A [ 2,2 ]

A [ 1,3 ]

A [ 2,3 ]



The Translation Scheme for Addressing Array Elements :

Semantic actions will be added to the grammar :

(1) S  L : = E

(2) E  E + E

(3) E  ( E )

(4) E  L

(5) L  Elist ]

(6) L  id

(7) Elist  Elist , E

(8) Elist  id [ E

We generate a normal assignment if L is a simple name, and an indexed assignment into the

location denoted by L otherwise :

(1) S  L : = E { if L.offset = null then / * L is a simple id */

emit ( L.place ‘: =’ E.place ) ;

else

emit ( L.place ‘ [‘ L.offset ‘ ]’ ‘: =’ E.place) }

(2) E  E1 + E2 { E.place : = newtemp;

emit ( E.place ‘: =’ E1.place ‘ +’ E2.place ) }

(3) E  ( E1 ) { E.place : = E1.place }

When an array reference L is reduced to E , we want the r-value of L. Therefore we use indexing

to obtain the contents of the location L.place [ L.offset ] :

(4) E  L { if L.offset = null then /* L is a simple id* /

E.place : = L.place

else begin

E.place : = newtemp;

emit ( E.place  ‘: =’ L.place ‘ [‘ L.offset ‘]’)

end }

(5) L  Elist ] { L.place : = newtemp;

L.offset : = newtemp;

emit (L.place ‘: =’ c( Elist.array ));

emit (L.offset ‘: =’ Elist.place ‘*’ width (Elist.array)) }

(6) L  id { L.place := id.place;

L.offset := null }

(7) Elist  Elist1 , E { t := newtemp;

m : = Elist1.ndim + 1;

emit ( t ‘: =’ Elist1.place ‘*’ limit (Elist1.array,m));

emit ( t ‘: =’ t ‘+’ E.place);

Elist.array : = Elist1.array;



Elist.place : = t;

Elist.ndim : = m }

(8) Elist  id [ E { Elist.array : = id.place;

Elist.place : = E.place;

Elist.ndim : = 1 }

Type conversion within Assignments :

Consider the grammar for assignment statements as above, but suppose there are two

types – real and integer , with integers converted to reals when necessary. We have another

attribute E.type, whose value is either real or integer. The semantic rule for E.type associated

with the production E  E + E is :

E  E + E { E.type : =

if E1.type = integer and

E2.type = integer then integer

else real }

The entire semantic rule for E  E + E and most of the other productions must be

modified to generate, when necessary, three-address statements of the form x : = inttoreal y,

whose effect is to convert integer y to a real of equal value, called x.

Semantic action for E  E1 + E2

E.place := newtemp;

if E1.type = integer and E2.type = integer then begin

emit( E.place ‘: =’ E1.place ‘int +’ E2.place);

E.type : = integer

end

else if E1.type = real and E2.type = real then begin

emit( E.place ‘: =’ E1.place ‘real +’ E2.place);

E.type : = real

end

else if E1.type = integer and E2.type = real then begin

u : = newtemp;

emit( u ‘: =’ ‘inttoreal’ E1.place);

emit( E.place ‘: =’ u ‘ real +’ E2.place);

E.type : = real

end

else if E1.type = real and E2.type =integer then begin

u : = newtemp;

emit( u ‘: =’ ‘inttoreal’ E2.place);

emit( E.place ‘: =’ E1.place ‘ real +’ u);

E.type : = real

end

else

E.type : = type_error;



For example, for the input x : = y + i * j

assuming x and y have type real, and i and j have type integer, the output would look like

t1 : =  i  int* j

t3 : =  inttoreal  t1

t2 : = y real+ t3

x : = t2

BOOLEAN EXPRESSIONS

Boolean expressions have two primary purposes. They are used to compute logical

values, but more often they are used as conditional expressions in statements that alter the flow

of control, such as if-then-else, or while-do statements.

Boolean expressions are composed of the boolean operators ( and, or, and not ) applied

to elements that are boolean variables or relational expressions. Relational expressions are of the

form E1 relop E2, where E1 and E2 are arithmetic expressions.

Here we consider boolean expressions generated by the following grammar :

E  E or E | E and E | not E | ( E ) | id relop id | true | false

Methods of Translating Boolean Expressions:

There are two principal methods of representing the value of a boolean expression. They are :

 To encode true and false numerically and to evaluate a boolean expression analogously

to an arithmetic expression. Often, 1 is used to denote true and 0 to denote false.

 To implement boolean expressions by flow of control, that is, representing the value of a

boolean expression by a position reached in a program. This method is particularly

convenient in implementing the boolean expressions in flow-of-control statements, such

as the if-then and while-do statements.

Numerical Representation

Here, 1 denotes true and 0 denotes false. Expressions will be evaluated completely from

left to right, in a manner similar to arithmetic expressions.

For example :

 The translation for

a or b and  not c

is the three-address sequence

t1 : = not c

t2 : = b and t1

t3 : = a or t2

 A relational expression such as a < b is equivalent to the conditional statement

if a < b then 1 else 0



which can be translated into the three-address code sequence (again, we arbitrarily start

statement numbers at 100) :

100 : if a < b goto 103

101 :     t : = 0

102 :     goto 104

103 :     t : = 1

104 :

Translation scheme using a numerical representation for booleans

E  E1 or E2 { E.place : = newtemp;

emit( E.place ‘: =’ E1.place ‘or’ E2.place ) }

E  E1 and E2 { E.place : = newtemp;

emit( E.place ‘: =’ E1.place ‘and’ E2.place ) }

E  not E1 { E.place : = newtemp;

emit( E.place ‘: =’  ‘not’ E1.place ) }

E  ( E1 ) { E.place : = E1.place }

E  id1 relop id2 { E.place : = newtemp;

emit( ‘if’ id1.place relop.op id2.place ‘goto’ nextstat + 3);

emit( E.place ‘: =’ ‘0’ );

emit(‘goto’ nextstat +2);

emit( E.place ‘: =’ ‘1’) }

E  true { E.place : = newtemp;

emit( E.place ‘: =’ ‘1’) }

E false { E.place : = newtemp;

emit( E.place ‘: =’ ‘0’) }

Short-Circuit Code:

We can also translate a boolean expression into three-address code without generating

code for any of the boolean operators and without having the code necessarily evaluate the entire

expression. This style of evaluation is sometimes called “short-circuit” or “jumping” code. It is

possible to evaluate boolean expressions without generating code for the boolean operators and,

or, and not if we represent the value of an expression by a position in the code sequence.

Translation of a < b or c < d and e < f

100 :  if  a  <  b goto  103 107 :  t2 : = 1

101 :   t1 : = 0                                        108 :  if  e <  f  goto  111

102 :  goto  104 109 :  t3 : = 0

103 :  t1 : = 1 110 : goto 112

104 :  if  c <  d goto  107 111 :  t3 : = 1

105 :  t2 : = 0 112 :  t4 : = t2 and t3

106 :  goto  108 113 :  t5 : = t1 or  t4



Flow-of-Control Statements

We now consider the translation of boolean expressions into three-address code in the

context of if-then, if-then-else, and while-do statements such as those generated by the following

grammar:

S  if E then S1

| if E then S1 else S2

|    while E do S1

In each of these productions, E is the Boolean expression to be translated. In the translation, we

assume that a three-address statement can be symbolically labeled, and that the function

newlabel returns a new symbolic label each time it is called.

 E.true is the label to which control flows if E is true, and E.false is the label to which

control flows if E is false.

 The semantic rules for translating a flow-of-control statement S allow control to flow

from the translation S.code to the three-address instruction immediately following

S.code.

 S.next is a label that is attached to the first three-address instruction to be executed after

the code for S.

Code for if-then , if-then-else, and while-do statements

to E.true

to E.false

to E.true E.true:

E.true : to E.false

E.false:

E.false : . . .

S.next:             . . .

(a) if-then (b) if-then-else

S.begin: to E.true

to E.false

E.true:

E.false: . . .

(c) while-do

E.code

S1.code

E.code

S1.code

goto S.next

S2.code

E.code

S1.code

goto S.begin



Syntax-directed definition for flow-of-control statements

PRODUCTION                                        SEMANTIC RULES

S  if E then S1 E.true : = newlabel;

E.false : = S.next;

S1.next : = S.next;

S.code : = E.code || gen(E.true ‘:’) || S1.code

S  if E then S1 else S2 E.true : = newlabel;

E.false : = newlabel;

S1.next : = S.next;

S2.next : = S.next;

S.code : = E.code || gen(E.true ‘:’) || S1.code ||

gen(‘goto’ S.next) ||

gen( E.false ‘:’) || S2.code

S  while E do S1 S.begin : = newlabel;

E.true : = newlabel;

E.false : = S.next;

S1.next : = S.begin;

S.code : = gen(S.begin ‘:’)|| E.code ||

gen(E.true ‘:’) || S1.code ||

gen(‘goto’ S.begin)

Control-Flow Translation of Boolean Expressions:

Syntax-directed definition to produce three-address code for booleans

PRODUCTION                                        SEMANTIC RULES

E  E1 or E2 E1.true : = E.true;

E1.false : = newlabel;

E2.true : = E.true;

E2.false : = E.false;

E.code : = E1.code || gen(E1.false ‘:’) || E2.code

E  E1 and E2 E.true : = newlabel;

E1.false : = E.false;

E2.true : = E.true;

E2.false : = E.false;

E.code : = E1.code || gen(E1.true ‘:’) || E2.code

E  not E1 E1.true : = E.false;

E1.false : = E.true;

E.code : = E1.code

E  ( E1 ) E1.true : = E.true;



E1.false : = E.false;

E.code : = E1.code

E  id1 relop id2 E.code : = gen(‘if’ id1.place relop.op id2.place

‘goto’ E.true) || gen(‘goto’ E.false)

E  true E.code : = gen(‘goto’ E.true)

E  false E.code : = gen(‘goto’ E.false)

CASE STATEMENTS

The “switch” or “case” statement is available in a variety of languages. The switch-statement

syntax is as shown below :

Switch-statement syntax

switch expression

begin

case value : statement

case value : statement

. . .

case value : statement

default : statement

end

There is a selector expression, which is to be evaluated, followed by n constant values

that the expression might take, including a default “value” which always matches the expression

if no other value does. The intended translation of a switch is code to:

1. Evaluate the expression.

2. Find which value in the list of cases is the same as the value of the expression.

3. Execute the statement associated with the value found.

Step (2) can be implemented in one of several ways :

 By a sequence of conditional goto statements, if the number of cases is small.

 By creating a table of pairs, with each pair consisting of a value and a label for the code

of the corresponding statement. Compiler generates a loop to compare the value of the

expression with each value in the table. If no match is found, the default (last) entry is

sure to match.

 If the number of cases s large, it is efficient to construct a hash table.

 There is a common special case in which an efficient implementation of the n-way branch

exists. If the values all lie in some small range, say imin to imax, and the number of

different values is a reasonable fraction of imax - imin, then we can construct an array of

labels, with the label of the statement for value j in the entry of the table with offset j -

imin and the label for the default in entries not filled otherwise. To perform switch,



evaluate the expression to obtain the value of j , check the value is within range and

transfer to the table entry at offset j-imin .

Syntax-Directed Translation of Case Statements:

Consider the following switch statement:

switch E

begin

case V1 : S1

case V2 : S2

. . .

case Vn-1 : Sn-1

default : Sn

end

This case statement is translated into intermediate code that has the following form :

Translation of a case statement

code to evaluate E into t

goto test

L1 :                code for S1

goto next

L2 : code for S2

goto next

.  .  .

Ln-1 : code for Sn-1

goto next

Ln :                code for Sn

goto next

test : if  t = V1 goto L1

if  t = V2 goto L2

.  .  .

if  t = Vn-1 goto Ln-1

goto Ln

next :

To translate into above form :

 When keyword switch is seen, two new labels test and next, and a new temporary t are

generated.

 As expression E is parsed, the code to evaluate E into t is generated. After processing E ,

the jump goto test is generated.

 As each case keyword occurs, a new label Li is created and entered into the symbol table.

A pointer to this symbol-table entry and the value Vi of case constant are placed on a

stack (used only to store cases).



 Each statement case Vi : Si is processed by emitting the newly created label Li, followed

by the code for Si , followed by the jump goto next.

 Then when the keyword end terminating the body of the switch is found, the code can be

generated for the n-way branch. Reading the pointer-value pairs on the case stack from

the bottom to the top, we can generate a sequence of three-address statements of the form

case V1 L1

case V2 L2

. . .

case Vn-1 Ln-1

case t Ln

label  next

where t is the name holding the value of the selector expression E, and Ln is the label for

the default statement.

BACKPATCHING

The easiest way to implement the syntax-directed definitions for boolean expressions is

to use two passes. First, construct a syntax tree for the input, and then walk the tree in depth-first

order, computing the translations. The main problem with generating code for boolean

expressions and flow-of-control statements in a single pass is that during one single pass we may

not know the labels that control must go to at the time the jump statements are generated. Hence,

a series of branching statements with the targets of the jumps left unspecified is generated. Each

statement will be put on a list of goto statements whose labels will be filled in when the proper

label can be determined. We call this subsequent filling in of labels backpatching.

To manipulate lists of labels, we use three functions :

1. makelist(i) creates a new list containing only i, an index into the array of quadruples;

makelist returns a pointer to the list it has made.

2. merge(p1,p2) concatenates the lists pointed to by p1 and p2, and returns a pointer to the

concatenated list.

3. backpatch(p,i) inserts i as the target label for each of the statements on the list pointed to

by p.

Boolean Expressions:

We now construct a translation scheme suitable for producing quadruples for boolean

expressions during bottom-up parsing. The grammar we use is the following:

(1) E  E1 or M E2

(2) | E1 and M E2

(3) | not E1

(4) |   ( E1)

(5) | id1 relop id2

(6) | true

(7) | false

(8) M  ɛ



Synthesized attributes truelist and falselist of nonterminal E are used to generate jumping code

for boolean expressions. Incomplete jumps with unfilled labels are placed on lists pointed to by

E.truelist and E.falselist.

Consider production E  E1 and M E2. If E1 is false, then E is also false, so the statements on

E1.falselist become part of E.falselist. If E1 is true, then we must next test E2, so the target for the

statements E1.truelist must be the beginning of the code generated for E2. This target is obtained

using marker nonterminal M.

Attribute M.quad records the number of the first statement of E2.code. With the production M 

ɛ we associate the semantic action

{ M.quad : = nextquad }

The variable nextquad holds the index of the next quadruple to follow. This value will be

backpatched onto  the E1.truelist when we have seen the remainder of the production E  E1 and

M E2. The translation scheme is as follows:

(1) E  E1 or M E2 { backpatch ( E1.falselist, M.quad);

E.truelist : = merge( E1.truelist, E2.truelist);

E.falselist : = E2.falselist }

(2) E  E1 and M E2 { backpatch ( E1.truelist, M.quad);

E.truelist : = E2.truelist;

E.falselist : = merge(E1.falselist, E2.falselist) }

(3) E  not E1 { E.truelist : = E1.falselist;

E.falselist : = E1.truelist; }

(4) E  ( E1 ) { E.truelist : = E1.truelist;

E.falselist : = E1.falselist; }

(5) E  id1 relop id2 { E.truelist : = makelist (nextquad);

E.falselist : = makelist(nextquad + 1);

emit(‘if’ id1.place relop.op id2.place ‘goto_’)

emit(‘goto_’) }

(6) E  true { E.truelist : = makelist(nextquad);

emit(‘goto_’) }

(7) E  false { E.falselist : = makelist(nextquad);

emit(‘goto_’) }

(8) M  ɛ { M.quad : = nextquad }



Flow-of-Control Statements:

A translation scheme is developed for statements generated by the following grammar :

(1) S  if E then S

(2) | if E then S else S

(3) | while E do S

(4) | begin L end

(5) | A

(6) L  L ; S

(7) | S

Here S denotes a statement, L a statement list, A an assignment statement, and E a boolean

expression. We make the tacit assumption that the code that follows a given statement in

execution also follows it physically in the quadruple array. Else, an explicit jump must be

provided.

Scheme to implement the Translation:

The nonterminal E has two attributes E.truelist and E.falselist. L and S also need a list of

unfilled quadruples that must eventually be completed by backpatching. These lists are pointed

to by the attributes L..nextlist and S.nextlist. S.nextlist is a pointer to a list of all conditional and

unconditional jumps to the quadruple following the statement S in execution order, and L.nextlist

is defined similarly.

The semantic rules for the revised grammar are as follows:

(1) S  if E then M1 S1 N else M2 S2

{ backpatch (E.truelist, M1.quad);

backpatch (E.falselist, M2.quad);

S.nextlist : = merge (S1.nextlist, merge (N.nextlist, S2.nextlist)) }

We backpatch the jumps when E is true to the quadruple M1.quad, which is the beginning of the

code for S1. Similarly, we backpatch jumps when E is false to go to the beginning of the code for

S2. The list S.nextlist includes all jumps out of S1 and S2, as well as the jump generated by N.

(2) N  ɛ { N.nextlist : = makelist( nextquad );

emit(‘goto _’) }

(3) M  ɛ { M.quad : = nextquad }

(4) S  if E then M S1 { backpatch( E.truelist, M.quad);

S.nextlist : = merge( E.falselist, S1.nextlist) }

(5) S  while M1 E do M2 S1 { backpatch( S1.nextlist, M1.quad);

backpatch( E.truelist, M2.quad);

S.nextlist : = E.falselist

emit( ‘goto’ M1.quad ) }

(6) S  begin L end { S.nextlist : = L.nextlist }



(7) S  A { S.nextlist : = nil }

The assignment S.nextlist : = nil initializes S.nextlist to an empty list.

(8) L  L1 ; M S { backpatch( L1.nextlist, M.quad);

L.nextlist : = S.nextlist }

The statement following L1 in order of execution is the beginning of S. Thus the L1.nextlist list is

backpatched to the beginning of the code for S, which is given by M.quad.

(9) L  S { L.nextlist : = S.nextlist }

PROCEDURE CALLS

The procedure is such an important and frequently used programming construct that it is

imperative for a compiler to generate good code for procedure calls and returns. The run-time

routines that handle procedure argument passing, calls and returns are part of the run-time

support package.

Let us consider a grammar for a simple procedure call statement

(1) S  call id ( Elist )

(2) Elist  Elist , E

(3) Elist  E

Calling Sequences:

The translation for a call includes a calling sequence, a sequence of actions taken on entry

to and exit from each procedure. The falling are the actions that take place in a calling sequence :

 When a procedure call occurs, space must be allocated for the activation record of the

called procedure.

 The arguments of the called procedure must be evaluated and made available to the called

procedure in a known place.

 Environment pointers must be established to enable the called procedure to access data in

enclosing blocks.

 The state of the calling procedure must be saved so it can resume execution after the call.

 Also saved in a known place is the return address, the location to which the called

routine must transfer after it is finished.

 Finally a jump to the beginning of the code for the called procedure must be generated.

For example, consider the following syntax-directed translation

(1) S  call id ( Elist )

{ for each item p on queue do

emit (‘ param’ p );



emit (‘call’ id.place) }

(2) Elist  Elist , E

{   append E.place to the end of queue }

(3) Elist  E

{   initialize queue to contain only E.place }

 Here, the code for S is the code for Elist, which evaluates the arguments, followed by a

param p statement for each argument, followed by a call statement.

 queue is emptied and then gets a single pointer to the symbol table location for the name

that denotes the value of E.



The final phase in compiler model is the code generator. It takes as input an intermediate

representation of the source program and produces as output an equivalent target program. The

code generation techniques presented below can be used whether or not an optimizing phase

occurs before code generation.

Position of code generator

source intermediate                              intermediate target

program code                                          code program

ISSUES IN THE DESIGN OF A CODE GENERATOR

The following issues arise during the code generation phase :

1. Input to code generator

2. Target program

3. Memory management

4. Instruction selection

5. Register allocation

6. Evaluation order

1. Input to code generator:

 The input to the code generation consists of  the intermediate representation of the source

program produced by front end , together with information in the symbol table to

determine run-time addresses of the data objects denoted by the names in the

intermediate representation.

 Intermediate representation can be :

a. Linear representation such as postfix notation

b. Three address representation such as quadruples

c. Virtual machine representation such as stack machine code

d. Graphical representations such as syntax trees and dags.

 Prior to code generation, the front end must be scanned, parsed and translated into

intermediate representation along with necessary type checking. Therefore, input to code

generation is assumed to be error-free.

2. Target program:

 The output of the code generator is the target program. The output may be :

a. Absolute machine language

- It can be placed in a fixed memory location and can be executed immediately.

front end code

optimizer

code

generator

symbol

table

MODULE-4   CODE GENERATION



b. Relocatable machine language

- It allows subprograms to be compiled separately.

c. Assembly language

- Code generation is made easier.

3. Memory management:

 Names in the source program are mapped to addresses of data objects in run-time

memory by the front end and code generator.

 It makes use of symbol table, that is, a name in a three-address statement refers to a

symbol-table entry for the name.

 Labels in three-address statements have to be converted to addresses of instructions.

For example,

j : goto i generates jump instruction as follows :

 if i < j, a backward jump instruction with target address equal to location of

code for quadruple i is generated.

 if i > j, the jump is forward. We must store on a list for quadruple i the

location of the first machine instruction generated for quadruple j. When i is

processed, the machine locations for all instructions that forward jumps to i

are filled.

4. Instruction selection:

 The instructions of target machine should be complete and uniform.

 Instruction speeds and machine idioms are important factors when efficiency of target

program is considered.

 The quality of the generated code is determined by its speed and size.

 The former statement can be translated into the latter statement as shown below:

5. Register allocation

 Instructions involving register operands are shorter and faster than those involving

operands in memory.

 The use of registers is subdivided into two subproblems :

 Register allocation – the set of variables that will reside in registers at a point in

the program is selected.



 Register assignment – the specific register that a variable will reside in is

picked.

 Certain machine requires even-odd register pairs for some operands and results.

For example , consider the division instruction of the form :

D x, y

where, x – dividend even register in even/odd register pair

y – divisor

even register holds the remainder

odd register holds the quotient

6. Evaluation order

 The order in which the computations are performed can affect the efficiency of the

target code. Some computation orders require fewer registers to hold intermediate

results than others.

TARGET MACHINE

 Familiarity with the target machine and its instruction set is a prerequisite for designing a

good code generator.

 The target computer is a byte-addressable machine with 4 bytes to a word.

 It has n general-purpose registers, R0, R1, . . . , Rn-1.

 It has two-address instructions of the form:

op source, destination

where, op is an op-code, and source and destination are data fields.

 It has the following op-codes :

MOV (move source to destination)

ADD    (add source to destination)

SUB     (subtract source from destination)

 The source and destination of an instruction are specified by combining registers and

memory locations with address modes.

Address modes with their assembly-language forms

MODE FORM ADDRESS ADDED COST

absolute M M 1

register R R 0

indexed c(R) c+contents(R) 1

indirect register *R contents (R) 0

indirect indexed *c(R) contents(c+

contents(R))

1

literal #c c 1



 For example : MOV R0, M stores contents of Register R0 into memory location M ;

MOV 4(R0), M stores the value contents(4+contents(R0)) into M.

Instruction costs :

 Instruction cost = 1+cost for source and destination address modes. This cost corresponds

to the length of the instruction.

 Address modes involving registers have cost zero.

 Address modes involving memory location or literal have cost one.

 Instruction length should be minimized if space is important. Doing so also minimizes the

time taken to fetch and perform the instruction.

For example : MOV R0, R1 copies the contents of register R0 into R1. It has cost one,

since it occupies only one word of memory.

 The three-address statement a : = b + c can be implemented by many different instruction

sequences :

i) MOV b, R0

ADD c, R0 cost = 6

MOV R0, a

ii) MOV b, a

ADD c, a     cost = 6

iii) Assuming R0, R1 and R2 contain the addresses of a, b, and c :

MOV *R1, *R0

ADD *R2, *R0 cost = 2

 In order to generate good code for target machine, we must utilize its addressing

capabilities efficiently.

RUN-TIME STORAGE MANAGEMENT

 Information needed during an execution of a procedure is kept in a block of storage

called an activation record, which includes storage for names local to the procedure.

 The two standard storage allocation strategies are:

1. Static allocation

2. Stack allocation

 In static allocation, the position of an activation record in memory is fixed at compile

time.

 In stack allocation, a new activation record is pushed onto the stack for each execution of

a procedure. The record is popped when the activation ends.

 The following three-address statements are associated with the run-time allocation and

deallocation of activation records:

1. Call,

2. Return,

3. Halt, and

4. Action, a placeholder for other statements.

 We assume that the run-time memory is divided into areas for:

1. Code

2. Static data

3. Stack



Static allocation

Implementation of call statement:

The codes needed to implement static allocation are as follows:

MOV #here + 20, callee.static_area /*It saves return address*/

GOTO callee.code_area /*It transfers control to the target code for the called procedure */

where,

callee.static_area – Address of the activation record

callee.code_area – Address of the first instruction for called procedure

#here + 20 – Literal return address which is the address of the instruction following GOTO.

Implementation of return statement:

A return from procedure callee is implemented by :

GOTO *callee.static_area

This transfers control to the address saved at the beginning of the activation record.

Implementation of action statement:

The instruction ACTION is used to implement action statement.

Implementation of halt statement:

The statement HALT is the final instruction that returns control to the operating system.

Stack allocation

Static allocation can become stack allocation by using relative addresses for storage in

activation records. In stack allocation, the position of activation record is stored in register so

words in activation records can be accessed as offsets from the value in this register.

The codes needed to implement stack allocation are as follows:

Initialization of stack:

MOV #stackstart , SP /* initializes stack */

Code for the first procedure

HALT /* terminate execution */

Implementation of Call statement:

ADD #caller.recordsize, SP /* increment stack pointer */

MOV #here + 16, *SP /*Save return address */

GOTO callee.code_area



where,

caller.recordsize – size of the activation record

#here + 16 – address of the instruction following the GOTO

Implementation of Return statement:

GOTO *0 ( SP )         /*return to the caller */

SUB #caller.recordsize, SP /* decrement SP and restore to previous value */

BASIC BLOCKS AND FLOW GRAPHS

Basic Blocks

 A basic block is a sequence of consecutive statements in which flow of control enters at

the beginning and leaves at the end without any halt or possibility of branching except at

the end.

 The following sequence of three-address statements forms a basic block:

t1 : = a * a

t2 : = a * b

t3 : = 2 * t2

t4 : = t1 + t3

t5 : = b * b

t6 : = t4 + t5

Basic Block Construction:

Algorithm: Partition into basic blocks

Input: A sequence of three-address statements

Output: A list of basic blocks with each three-address statement in exactly one block

Method:

1. We first determine the set of leaders, the first statements of basic blocks. The rules

we use are of the following:

a. The first statement is a leader.

b. Any statement that is the target of a conditional or unconditional goto is a

leader.

c. Any statement that immediately follows a goto or conditional goto statement

is a leader.

2. For each leader, its basic block consists of the leader and all statements up to but not

including the next leader or the end of the program.



 Consider the following source code for dot product of two vectors a and b of length 20

 The three-address code for the above source program is given as :

Basic block 1: Statement (1) to (2)

Basic block 2: Statement (3) to (12)

begin

prod :=0;

i:=1;

do begin

prod :=prod+ a[i] * b[i];

i :=i+1;

end

while i <= 20

end

(1) prod := 0

(2) i := 1

(3) t1 := 4* i

(4) t2 := a[t1] /*compute a[i] */

(5) t3 := 4* i

(6) t4 :=  b[t3] /*compute b[i] */

(7) t5 := t2*t4

(8) t6 := prod+t5

(9) prod := t6

(10) t7 := i+1

(11) i := t7

(12) if i<=20 goto (3)



Transformations on Basic Blocks:

A number of transformations can be applied to a basic block without changing the set of

expressions computed by the block. Two important classes of transformation are :

 Structure-preserving transformations

 Algebraic transformations

1. Structure preserving transformations:

a) Common subexpression elimination:

a : = b + c a : = b + c

b : = a – d b : = a - d

c : = b + c c : = b + c

d : = a – d d : = b

Since the second and fourth expressions compute the same expression, the basic block can be

transformed as above.

b) Dead-code elimination:

Suppose x is dead, that is, never subsequently used, at the point where the statement x : =

y + z appears in a basic block. Then this statement may be safely removed without changing

the value of the basic block.

c) Renaming temporary variables:

A statement t : = b + c ( t is a temporary ) can be changed to u : = b + c (u is a new

temporary) and all uses of this instance of t can be changed to u without changing the value of

the basic block.

Such a block is called a normal-form block.

d) Interchange of statements:

Suppose a block has the following two adjacent statements:

t1 : = b + c

t2 : = x + y

We can interchange the two statements without affecting the value of the block if and

only if neither x nor y is t1 and neither b nor c is t2.

2. Algebraic transformations:

Algebraic transformations can be used to change the set of expressions computed by a basic

block into an algebraically equivalent set.

Examples:

i) x : = x + 0    or   x : = x * 1 can be eliminated from a basic block without changing the set of

expressions it computes.

ii) The exponential statement x : = y * * 2 can be replaced by x : = y * y.



Flow Graphs

 Flow graph is a directed graph containing the flow-of-control information for the set of

basic blocks making up a program.

 The nodes of the flow graph are basic blocks. It has a distinguished initial node.

 E.g.: Flow graph for the vector dot product is given as follows:

B1

B2

 B1 is the initial node. B2 immediately follows B1, so there is an edge from B1 to B2. The

target of jump from last statement of B1 is the first statement B2, so there is an edge from

B1 (last statement) to B2 (first statement).

 B1 is the predecessor of B2, and B2 is a successor of B1.

Loops

 A loop is a collection of nodes in a flow graph such that

1. All nodes in the collection are strongly connected.

2. The collection of nodes has a unique entry.

 A loop that contains no other loops is called an inner loop.

NEXT-USE INFORMATION

 If the name in a register is no longer needed, then we remove the name from the register

and the register can be used to store some other names.

t1 : = 4 * i

t2 : = a [ t1 ]

t3 : = 4 * i

t4 : = b [ t3 ]

t5 : = t2 * t4

t6 : = prod + t5

prod : = t6

t7 : = i + 1

i : = t7

if i <= 20 goto B2

prod : = 0

i : = 1



Symbol Table:

Names Liveliness Next-use

x not live no next-use

y Live i

z Live i

A SIMPLE CODE GENERATOR

 A code generator generates target code for a sequence of three- address statements and

effectively uses registers to store operands of the statements.

 For example: consider the three-address statement a := b+c

It can have the following sequence of codes:

ADD Rj, Ri Cost = 1 // if Ri contains b and Rj contains c

(or)

ADD c, Ri Cost = 2 // if c is in a memory location

(or)

MOV c, Rj Cost = 3 // move c from memory to Rj and add

ADD Rj, Ri

Register and Address Descriptors:

 A register descriptor is used to keep track of what is currently in each registers. The

register descriptors show that initially all the registers are empty.

 An address descriptor stores the location where the current value of the name can be

found at run time.

Input: Basic block B of three-address statements

Output: At each statement i: x= y op z, we attach to i the liveliness and next-uses of x,

y and z.

Method: We start at the last statement of B and scan backwards.

1. Attach to statement i the information currently found in the symbol table

regarding the next-use and liveliness of x, y and z.

2. In the symbol table, set x to “not live” and “no next use”.

3. In the symbol table, set y and z to “live”, and next-uses of y and z to i.



A code-generation algorithm:

The algorithm takes as input a sequence of three-address statements constituting a basic block.

For each three-address statement of the form x : = y op z, perform the following actions:

1.  Invoke a function getreg to determine the location L where the result of the computation y op

z should be stored.

2.  Consult the address descriptor for y to determine y’, the current location of y. Prefer the

register for y’ if the value of y is currently both in memory and a register. If the value of y is

not already in L, generate the instruction MOV y’ , L to place a copy of y in L.

3.  Generate the instruction OP z’ , L where z’ is a current location of z. Prefer a register to a

memory location if z is in both. Update the address descriptor of x to indicate that x is in

location L. If x is in L, update its descriptor and remove x from all other descriptors.

4. If the current values of y or z have no next uses, are not live on exit from the block, and are in

registers, alter the register descriptor to indicate that, after execution of x : = y op z , those

registers will no longer contain y or z.

Generating Code for Assignment Statements:

 The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-

address code sequence:

t : = a – b

u : = a – c

v : = t + u

d : = v + u

with d live at the end.

Code sequence for the example is:

Statements Code Generated Register descriptor Address descriptor

Register empty

t : = a - b MOV a, R0

SUB b, R0

R0 contains t t in R0

u : = a - c MOV a , R1

SUB c , R1

R0 contains t

R1 contains u

t in R0

u in R1

v : = t + u ADD R1, R0 R0 contains v

R1 contains u

u in R1

v in R0

d : = v + u ADD R1, R0

MOV R0, d

R0 contains d d in R0

d in R0 and memory



Generating Code for Indexed Assignments

The table shows the code sequences generated for the indexed assignment statements

a : = b [ i ] and a [ i ] : = b

Statements Code Generated Cost

a : =  b[i] MOV b(Ri), R 2

a[i] : = b MOV b, a(Ri) 3

Generating Code for Pointer Assignments

The table shows the code sequences generated for the pointer assignments

a : = *p and *p : = a

Statements Code Generated Cost

a : = *p MOV *Rp, a 2

*p : = a MOV a, *Rp 2

Generating Code for Conditional Statements

Statement Code

if x < y goto z CMP x, y

CJ< z /* jump to z if condition code

is negative */

x : = y +z

if x < 0 goto z

MOV y, R0

ADD z, R0

MOV R0,x

CJ< z

THE DAG REPRESENTATION FOR BASIC BLOCKS

 A DAG for a basic block is a directed acyclic graph with the following labels on nodes:

1. Leaves are labeled by unique identifiers, either variable names or constants.

2. Interior nodes are labeled by an operator symbol.

3. Nodes are also optionally given a sequence of identifiers for labels to store the

computed values.

 DAGs are useful data structures for implementing transformations on basic blocks.

 It gives a picture of how the value computed by a statement is used in subsequent

statements.

 It provides a good way of determining common sub - expressions.



Algorithm for construction of DAG

Example: Consider the block of three- address statements:

1. t1 := 4* i

2. t2 := a[t1]

3. t3 := 4* i

4. t4 :=  b[t3]

5. t5 := t2*t4

6. t6 := prod+t5

7. prod := t6

8. t7 := i+1

9. i := t7

10. if i<=20 goto (1)

Input: A basic block

Output: A DAG for the basic block containing the following information:

1. A label for each node. For leaves, the label is an identifier. For interior nodes, an

operator symbol.

2. For each node a list of attached identifiers to hold the computed values.

Case (i) x : = y OP z

Case (ii) x : = OP y

Case (iii) x : = y

Method:

Step 1: If y is undefined then create node(y).

If z is undefined, create node(z) for case(i).

Step 2: For the case(i), create a node(OP) whose left child is node(y) and right child is

node(z). ( Checking for common sub expression). Let n be this node.

For case(ii), determine whether there is node(OP) with one child node(y). If not create such

a node.

For case(iii), node n will be node(y).

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of attached

identifiers for the node n found in step 2 and set node(x) to n.



Stages in DAG Construction





Application of DAGs:

1. We can automatically detect common sub expressions.

2. We can determine which identifiers have their values used in the block.

3. We can determine which statements compute values that could be used outside the block.



GENERATING CODE FROM DAGs

The advantage of generating code for a basic block from its dag representation is that,

from a dag we can easily see how to rearrange the order of the final computation sequence than

we can starting from a linear sequence of three-address statements or quadruples.

Rearranging the order

The order in which computations are done can affect the cost of resulting object code.

For example, consider the following basic block:

t1 : = a + b

t2 : = c + d

t3 : = e – t2

t4 : = t1 – t3

Generated code sequence for basic block:

MOV a , R0

ADD b , R0

MOV c , R1

ADD d , R1

MOV R0 , t1

MOV e , R0

SUB R1 , R0

MOV t1 , R1

SUB R0 , R1

MOV R1 , t4

Rearranged basic block:

Now t1 occurs immediately before t4.

t2 : = c + d

t3 : = e – t2

t1 : = a + b

t4 : = t1 – t3

Revised code sequence:

MOV c , R0

ADD d , R0

MOV a , R0

SUB R0 , R1

MOV a , R0

ADD b , R0

SUB R1 , R0

MOV R0 , t4

In this order, two instructions MOV R0 , t1 and MOV t1 , R1 have been saved.



A Heuristic ordering for Dags

The heuristic ordering algorithm attempts to make the evaluation of a node immediately follow

the evaluation of its leftmost argument.

The algorithm shown below produces the ordering in reverse.

Algorithm:

1) while unlisted interior nodes remain do begin

2) select an unlisted node n, all of whose parents have been listed;

3) list n;

4) while the leftmost child m of n has no unlisted parents and is not a leaf do

begin

5) list m;

6) n : = m

end

end

Example: Consider the DAG shown below:

1

2                                                       3

4

5                                                    8

6                    7                             11                      12

9 10

Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line (3).

Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6).

Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we

select a new n at line (2), and node 3 is the only candidate. We list 3 and proceed down its left

chain, listing 4, 5 and 6. This leaves only 8 among the interior nodes so we list that.

The resulting list is 1234568 and the order of evaluation is 8654321.

-+

*

+

*

-

+ c d e

a b



Code sequence:

t8 : = d + e

t6 : = a + b

t5 : = t6 – c

t4 : = t5 * t8

t3 : = t4 – e

t2 : = t6 + t4

t1 : = t2 * t3

This will yield an optimal code for the DAG on machine whatever be the number of registers.



MODULE-4 - CODE OPTIMIZATION

INTRODUCTION

 The code produced by the straight forward compiling algorithms can often be made to run

faster or take less space, or both. This improvement is achieved by program transformations

that are traditionally called optimizations. Compilers that apply code-improving

transformations are called optimizing compilers.

 Optimizations are classified into two categories. They are

 Machine independent optimizations:

 Machine dependant optimizations:

Machine independent optimizations:

 Machine independent optimizations are program transformations that improve the target code

without taking into consideration any properties of the target machine.

Machine dependant optimizations:

 Machine dependant optimizations are based on register allocation and utilization of special

machine-instruction sequences.

The criteria for code improvement transformations:

 Simply stated, the best program transformations are those that yield the most benefit for the

least effort.

 The transformation must preserve the meaning of programs. That is, the optimization must

not change the output produced by a program for a given input, or cause an error such as

division by zero, that was not present in the original source program. At all times we take the

“safe” approach of missing an opportunity to apply a transformation rather than risk

changing what the program does.

 A transformation must, on the average, speed up programs by a measurable amount. We are

also interested in reducing the size of the compiled code although the size of the code has

less importance than it once had. Not every transformation succeeds in improving every

program, occasionally an “optimization” may slow down a program slightly.

 The transformation must be worth the effort. It does not make sense for a compiler writer to

expend the intellectual effort to implement a code improving transformation and to have the

compiler expend the additional time compiling source programs if this effort is not repaid

when the target programs are executed. “Peephole” transformations of this kind are simple

enough and beneficial enough to be included in any compiler.



Organization for an Optimizing Compiler:

 Flow analysis is a fundamental prerequisite for many important types of code

improvement.

 Generally control flow analysis precedes data flow analysis.

 Control flow analysis (CFA) represents flow of control usually in form of graphs, CFA

constructs such as

 control flow graph

 Call graph

 Data flow analysis (DFA) is the process of ascerting and collecting information prior to

program execution about the possible modification, preservation, and use of certain

entities (such as values or attributes of variables) in a computer program.

PRINCIPAL SOURCES OF OPTIMISATION

 A transformation of a program is called local if it can be performed by looking only at the

statements in a basic block; otherwise, it is called global.

 Many transformations can be performed at both the local and global levels. Local

transformations are usually performed first.

Function-Preserving Transformations

 There are a number of ways in which a compiler can improve a program without

changing the function it computes.

 The transformations

 Common sub expression elimination,

 Copy propagation,

 Dead-code elimination, and

 Constant folding

are common examples of such function-preserving transformations. The other

transformations come up primarily when global optimizations are performed.



 Frequently, a program will include several calculations of the same value, such as an

offset in an array. Some of the duplicate calculations cannot be avoided by the

programmer because they lie below the level of detail accessible within the source

language.

 Common Sub expressions elimination:

 An occurrence of an expression E is called a common sub-expression if E was previously

computed, and the values of variables in E have not changed since the previous

computation. We can avoid recomputing the expression if we can use the previously

computed value.

 For example

t1: = 4*i

t2: = a [t1]

t3: = 4*j

t4: = 4*i

t5: = n

t6: = b [t4] +t5

The above code can be optimized using the common sub-expression elimination as

t1: = 4*i

t2: = a [t1]

t3: = 4*j

t5: = n

t6: = b [t1] +t5

The common sub expression t4: =4*i is eliminated as its computation is alre ady in t1. And

value of i is not been changed from definition to use.

 Copy Propagation:

 Assignments of the form f : = g called copy statements, or copies for short. The idea

behind the copy-propagation transformation is to use g for f, whenever possible after the

copy statement f: = g. Copy propagation means use of one variable instead of another.

This may not appear to be an improvement, but as we shall see it gives us an opportunity

to eliminate x.

 For example:

x=Pi;

……

A=x*r*r;

The optimization using copy propagation can be done as follows:

A=Pi*r*r;

Here the variable x is eliminated

 Dead-Code Eliminations:

 A variable is live at a point in a program if its value can be used subsequently; otherwise,

it is dead at that point. A related idea is dead or useless code, statements that compute



values that never get used. While the programmer is unlikely to introduce any dead code

intentionally, it may appear as the result of previous transformations. An optimization can

be done by eliminating dead code.

Example:

i=0;

if(i=1)

{

a=b+5;

}

Here, ‘if’ statement is dead code because this condition will never get satisfied.

 Constant folding:

 We can eliminate both the test and printing from the object code. More generally,

deducing at compile time that the value of an expression is a constant and using the

constant instead is known as constant folding.

 One advantage of copy propagation is that it often turns the copy statement into dead

code.

 For example,

a=3.14157/2 can be replaced by

a=1.570 there by eliminating a division operation.

 Loop Optimizations:

 We now give a brief introduction to a very important place for optimizations, namely

loops, especially the inner loops where programs tend to spend the bulk of their time. The

running time of a program may be improved if we decrease the number of instructions in

an inner loop, even if we increase the amount of code outside that loop.

 Three techniques are important for loop optimization:

 code motion, which moves code outside a loop;

 Induction-variable elimination, which we apply to replace variables from inner loop.

 Reduction in strength, which replaces and expensive operation by a cheaper one, such as

a multiplication by an addition.

 Code Motion:

 An important modification that decreases the amount of code in a loop is code motion.

This transformation takes an expression that yields the same result independent of the

number of times a loop is executed ( a loop-invariant computation) and places the

expression before the loop. Note that the notion “before the loop” assumes the existence

of an entry for the loop. For example, evaluation of limit-2 is a loop-invariant

computation in the following while-statement:

while (i <= limit-2) /* statement does not change limit*/

Code motion will result in the equivalent of



t= limit-2;

while (i<=t) /* statement does not change limit or t */

 Induction Variables :

 Loops are usually processed inside out. For example consider the loop around B3.

 Note that the values of j and t4 remain in lock-step; every time the value of j decreases by

1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called

induction variables.

 When there are two or more induction variables in a loop, it may be possible to get rid of

all but one, by the process of induction-variable elimination. For the inner loop around

B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4.

However, we can illustrate reduction in strength and illustrate a part of the process of

induction-variable elimination. Eventually j will be eliminated when the outer loop of B2

- B5 is considered.

Example:

As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. and t4 is not

changed elsewhere in the inner loop around B3, it follows that just after the statement

j:=j-1 the relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t4:=

4*j by t4:= t4-4. The only problem is that t4 does not have a value when we enter block B3

for the first time. Since we must maintain the relationship t4=4*j on entry to the block B3,

we place an initializations of t4 at the end of the block where j itself is

before after

initialized, shown by the dashed addition to block B1 in second Fig.



 The replacement of a multiplication by a subtraction will speed up the object code if

multiplication takes more time than addition or subtraction, as is the case on many

machines.

 Reduction In Strength:

 Reduction in strength replaces expensive operations by equivalent cheaper ones on the

target machine. Certain machine instructions are considerably cheaper than others and

can often be used as special cases of more expensive operators.

 For example, x² is invariably cheaper to implement as x*x than as a call to an

exponentiation routine. Fixed-point multiplication or division by a power of two is

cheaper to implement as a shift. Floating-point division by a constant can be implemented

as multiplication by a constant, which may be cheaper.

OPTIMIZATION OF BASIC BLOCKS

There are two types of basic block optimizations. They are :

 Structure-Preserving Transformations

 Algebraic Transformations

Structure-Preserving Transformations:

The primary Structure-Preserving Transformation on basic blocks are:

 Common sub-expression elimination

 Dead code elimination

 Renaming of temporary variables

 Interchange of two independent adjacent statements.

 Common sub-expression elimination:

Common sub expressions need not be computed over and over again. Instead they can be

computed once and kept in store from where it’s referenced when encountered aga in – of course

providing the variable values in the expression still remain constant.

Example:

a: =b+c

b: =a-d

c: =b+c

d: =a-d

The 2
nd

and 4
th

statements compute the same expression: b+c and a-d

Basic block can be transformed to

a: = b+c

b: = a-d

c: = a

d: = b



 Dead code elimination:

It’s possible that a large amount of dead (useless) code may exist in the program. This

might be especially caused when introducing variables and procedures as part of construction or

error-correction of a program – once declared and defined, one forgets to remove them in case

they serve no purpose. Eliminating these will definitely optimize the code.

 Renaming of temporary variables:

 A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is

another temporary name, and change all uses of t to u.

 In this we can transform a basic block to its equivalent block called normal-form block.

 Interchange of two independent adjacent statements:

 Two statements

t1:=b+c

t2:=x+y

can be interchanged or reordered in its computation in the basic block when value of t 1

does not affect the value of t2.

Algebraic Transformations:

 Algebraic identities represent another important class of optimizations on basic blocks.

This includes simplifying expressions or replacing expensive operation by cheaper ones

i.e. reduction in strength.

 Another class of related optimizations is constant folding. Here we evaluate constant

expressions at compile time and replace the constant expressions by their values. Thus

the expression 2*3.14 would be replaced by 6.28.

 The relational operators <=, >=, <, >, + and = sometimes generate unexpected common

sub expressions.

 Associative laws may also be applied to expose common sub expressions. For example, if

the source code has the assignments

a :=b+c

e :=c+d+b

the following intermediate code may be generated:

a :=b+c

t :=c+d

e :=t+b

 Example:

x:=x+0 can be removed

x:=y**2 can be replaced by a cheaper statement x:=y*y



 The compiler writer should examine the language carefully to determine what

rearrangements of computations are permitted, since computer arithmetic does not always

obey the algebraic identities of mathematics. Thus, a compiler may evaluate x*y-x*z as

x*(y-z) but it may not evaluate a+(b-c) as (a+b)-c.

LOOPS IN FLOW GRAPH

A graph representation of three-address statements, called a flow graph, is useful for

understanding code-generation algorithms, even if the graph is not explicitly constructed by a

code-generation algorithm. Nodes in the flow graph represent computations, and the edges

represent the flow of control.

Dominators:

In a flow graph, a node d dominates node n, if every path from initial node of the flow

graph to n goes through d. This will be denoted by d dom n. Every initial node dominates all the

remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop.

Similarly every node dominates itself.

Example:

*In the flow graph below,

*Initial node,node1 dominates every node.

*node 2 dominates itself

*node 3 dominates all but 1 and 2.

*node 4 dominates all but 1,2 and 3.

*node 5 and 6 dominates only themselves,since flow of control can skip around either by goin

through the other.

*node 7 dominates 7,8 ,9 and 10.

*node 8 dominates 8,9 and 10.

*node 9 and 10 dominates only themselves.



 The way of presenting dominator information is in a tree, called the dominator tree in

which the initial node is the root.

 The parent of each other node is its immediate dominator.

 Each node d dominates only its descendents in the tree.

 The existence of dominator tree follows from a property of dominators; each node has a

unique immediate dominator in that is the last dominator of n on any path from the initial

node to n.

 In terms of the dom relation, the immediate dominator m has the property is d=!n and d

dom n, then d dom m.

D(1)={1}

D(2)={1,2}

D(3)={1,3}

D(4)={1,3,4}

D(5)={1,3,4,5}

D(6)={1,3,4,6}

D(7)={1,3,4,7}

D(8)={1,3,4,7,8}

D(9)={1,3,4,7,8,9}

D(10)={1,3,4,7,8,10}



Natural Loop:

 One application of dominator information is in determining the loops of a flow graph suitable

for improvement.

 The properties of loops are

 A loop must have a single entry point, called the header. This entry point-dominates all

nodes in the loop, or it would not be the sole entry to the loop.

 There must be at least one way to iterate the loop(i.e.)at least one path back to the header.

 One way to find all the loops in a flow graph is to search for edges in the flow graph whose

heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These types of

edges are called as back edges.

 Example:

In the above graph,

7→ 4 4 DOM 7

10→7 7 DOM 10

4→ 3

8→ 3

9→1

 The above edges will form loop in flow graph.

 Given a back edge n → d, we define the natural loop of the edge to be d plus th e set of nodes

that can reach n without going through d. Node d is the header of the loop.

Algorithm: Constructing the natural loop of a back edge.

Input: A flow graph G and a back edge n→d.

Output: The set loop consisting of all nodes in the natural loop n→d.

Method: Beginning with node n, we consider each node m*d that we know is in loop, to make

sure that m’s predecessors are also placed in loop. Each node in loop, except for d, is placed once

on stack, so its predecessors will be examined. Note that because d is put in the loop initially, we

never examine its predecessors, and thus find only those nodes that reach n without going

through d.

Procedure insert(m);

if m is not in loop then begin

loop := loop U {m};

push m onto stack

end;

stack : = empty;



loop : = {d};

insert(n);

while stack is not empty do begin

pop m, the first element of stack, off stack;

for each predecessor p of m do insert(p)

end

Inner loop:

 If we use the natural loops as “the loops”, then we have the useful property that unless

two loops have the same header, they are either disjointed or one is entirely contained in

the other. Thus, neglecting loops with the same header for the moment, we have a natural

notion of inner loop: one that contains no other loop.

 When two natural loops have the same header, but neither is nested within the other, they

are combined and treated as a single loop.

Pre-Headers:

 Several transformations require us to move statements “before the header”. Therefore

begin treatment of a loop L by creating a new block, called the preheater.

 The pre-header has only the header as successor, and all edges which formerly entered

the header of L from outside L instead enter the pre-header.

 Edges from inside loop L to the header are not changed.

 Initially the pre-header is empty, but transformations on L may place statements in it.

loop L

loop L

(a) Before                                                     (b) After

Reducible flow graphs:

 Reducible flow graphs are special flow graphs, for which several code optimization

transformations are especially easy to perform, loops are unambiguously defined,

dominators can be easily calculated, data flow analysis problems can also be solved

efficiently.

 Exclusive use of structured flow-of-control statements such as if-then-else, while-do,

continue, and break statements produces programs whose flow graphs are always

reducible.

header pre-header

header



 The most important properties of reducible flow graphs are that there are no jumps into

the middle of loops from outside; the only entry to a loop is through its header.

 Definition:

A flow graph G is reducible if and only if we can partition the edges into two disjoint

groups, forward edges and back edges, with the following properties.

 The forward edges from an acyclic graph in which every node can be reached from initial

node of G.

 The back edges consist only of edges where heads dominate theirs tails.

 Example: The above flow graph is reducible.

 If we know the relation DOM for a flow graph, we can find and remove all the back

edges.

 The remaining edges are forward edges.

 If the forward edges form an acyclic graph, then we can say the flow graph reducible.

 In the above example remove the five back edges 4→3, 7→4, 8→3, 9→1 and 10→7

whose heads dominate their tails, the remaining graph is acyclic.

 The key property of reducible flow graphs for loop analysis is that in such flow graphs

every set of nodes that we would informally regard as a loop must contain a back edge.

PEEPHOLE OPTIMIZATION

 A statement-by-statement code-generations strategy often produce target code that

contains redundant instructions and suboptimal constructs .The quality of such target

code can be improved by applying “optimizing” transformations to the target program.

 A simple but effective technique for improving the target code is peephole optimization,

a method for trying to improving the performance of the target program by examining a

short sequence of target instructions (called the peephole) and replacing these

instructions by a shorter or faster sequence, whenever possible.

 The peephole is a small, moving window on the target program. The code in the peephole

need not contiguous, although some implementations do require this.it is characteristic of

peephole optimization that each improvement may spawn opportunities for additional

improvements.

 We shall give the following examples of program transformations that are characteristic

of peephole optimizations:

 Redundant-instructions elimination

 Flow-of-control optimizations

 Algebraic simplifications

 Use of machine idioms

 Unreachable Code



Redundant Loads And Stores:

If we see the instructions sequence

(1) MOV R0,a

(2) MOV a,R0

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of

a is already in register R0.If (2) had a label we could not be sure that (1) was always executed

immediately before (2) and so we could not remove (2).

Unreachable Code:

 Another opportunity for peephole optimizations is the removal of unreachable instructions.

An unlabeled instruction immediately following an unconditional jump may be removed.

This operation can be repeated to eliminate a sequence of instructions. For example, for

debugging purposes, a large program may have within it certain segments that are executed

only if a variable debug is 1. In C, the source code might look like:

#define debug 0

….

If ( debug ) {

Print debugging information

}

 In the intermediate representations the if-statement may be translated as:

If debug =1 goto L2

goto L2

L1: print debugging information

L2: …………………………(a)

 One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what

the value of debug; (a) can be replaced by:

If debug ≠1 goto L2

Print debugging information

L2: ……………………………(b)

 As the argument of the statement of (b) evaluates to a constant true it can be replaced

by



If debug ≠0 goto L2

Print debugging information

L2: ……………………………(c)

 As the argument of the first statement of (c) evaluates to a constant true, it can be replaced by

goto L2. Then all the statement that print debugging aids are manifestly unreachable and

can be eliminated one at a time.

Flows-Of-Control Optimizations:

 The unnecessary jumps can be eliminated in either the intermediate code or the target code

by the following types of peephole optimizations. We can replace the jump sequence

goto L1

….

L1: gotoL2

by the sequence

goto L2

….

L1: goto L2

 If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto

L2 provided it is preceded by an unconditional jump .Similarly, the sequence

if a < b goto L1

….

L1: goto L2

can be replaced by

If a < b goto L2

….

L1: goto L2

 Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto.

Then the sequence

goto L1

……..



L1: if a < b goto L2

L3: …………………………………..(1)

 May be replaced by

If a < b goto L2

goto L3

…….

L3: ………………………………….(2)

 While the number of instructions in (1) and (2) is the same, we sometimes skip the

unconditional jump in (2), but never in (1).Thus (2) is superior to (1) in execution time

Algebraic Simplification:

 There is no end to the amount of algebraic simplification that can be attempted through

peephole optimization. Only a few algebraic identities occur frequently enough that it is

worth considering implementing them .For example, statements such as

x := x+0

Or

x := x * 1

 Are often produced by straightforward intermediate code-generation algorithms, and they can

be eliminated easily through peephole optimization.

Reduction in Strength:

 Reduction in strength replaces expensive operations by equivalent cheaper ones on the target

machine. Certain machine instructions are considerably cheaper than others and can often be

used as special cases of more expensive operators.

 For example, x² is invariably cheaper to implement as x*x than as a call to an exponentiation

routine. Fixed-point multiplication or division by a power of two is cheaper to implement as

a shift. Floating-point division by a constant can be implemented as multiplication by a

constant, which may be cheaper.

X
2
→ X*X

Use of Machine Idioms:

 The target machine may have hardware instructions to implement certain specific operations

efficiently. For example, some machines have auto-increment and auto-decrement addressing

modes. These add or subtract one from an operand before or after using its value.

 The use of these modes greatly improves the quality of code when pushing or popping a

stack, as in parameter passing. These modes can also be used in code for statements like i :

=i+1.



i:=i+1→ i++

i:=i-1→ i- -

INTRODUCTION TO GLOBAL DATAFLOW ANALYSIS

 In order to do code optimization and a good job of code generation , compiler needs to

collect information about the program as a whole and to distribute this information to

each block in the flow graph.

 A compiler could take advantage of “reaching definitions” , such as knowing where a

variable like debug was last defined before reaching a given block, in order to perform

transformations are just a few examples of data-flow information that an optimizing

compiler collects by a process known as data-flow analysis.

 Data-flow information can be collected by setting up and solving systems of equations of

the form :

out [S] = gen [S] U ( in [S] – kill [S] )

This equation can be read as “ the information at the end of a statement is either generated

within the statement , or enters at the beginning and is not killed as control flows through

the statement.”

 The details of how data-flow equations are set and solved depend on three factors.

 The notions of generating and killing depend on the desired information, i.e., on the data

flow analysis problem to be solved. Moreover, for some problems, instead of proceeding

along with flow of control and defining out[s] in terms of in[s], we need to proceed

backwards and define in[s] in terms of out[s].

 Since data flows along control paths, data-flow analysis is affected by the constructs in a

program. In fact, when we write out[s] we implicitly assume that there is unique end

point where control leaves the statement; in general, equations are set up at the level of

basic blocks rather than statements, because blocks do have unique end points.

 There are subtleties that go along with such statements as procedure calls, assignments

through pointer variables, and even assignments to array variables.

Points and Paths:

 Within a basic block, we talk of the point between two adjacent statements, as well as the

point before the first statement and after the last. Thus, block B1 has four points: one

before any of the assignments and one after each of the three assignments.



B1

B2

B3

B4

B5 B6

 Now let us take a global view and consider all the points in all the blocks. A path from p 1

to pn is a sequence of points p1, p2,….,pn such that for each i between 1 and n-1, either

 Pi is the point immediately preceding a statement and pi+1 is the point immediately

following that statement in the same block, or

 Pi is the end of some block and pi+1 is the beginning of a successor block.

Reaching definitions:

 A definition of variable x is a statement that assigns, or may assign, a value to x. The

most common forms of definition are assignments to x and statements that read a value

from an i/o device and store it in x.

 These statements certainly define a value for x, and they are referred to as unambiguous

definitions of x. There are certain kinds of statements that may define a value for x; they

are called ambiguous definitions. The most usual forms of ambiguous definitions of x

are:

 A call of a procedure with x as a parameter or a procedure that can access x because x is

in the scope of the procedure.

 An assignment through a pointer that could refer to x. For example, the assignment *q: =

y is a definition of x if it is possible that q points to x. we must assume that an assignment

through a pointer is a definition of every variable.

 We say a definition d reaches a point p if there is a path from the point immediately

following d to p, such that d is not “killed” along that path. Thus a  point can be reached

d1 : i :=m-1

d2: j :=n

d3: a := u1

d4 : I := i+1

d5: j := j-1

d6 :a :=u2



by an unambiguous definition and an ambiguous definition of the same variable

appearing later along one path.

Data-flow analysis of structured programs:

 Flow graphs for control flow constructs such as do-while statements have a useful

property: there is a single beginning point at which control enters and a single end point

that control leaves from when execution of the statement is over. We exploit this property

when we talk of the definitions reaching the beginning and the end of statements with the

following syntax.

S          id: = E| S; S | if E then S else S | do S while E

E         id + id| id

 Expressions in this language are similar to those in the intermediate code, but the flow

graphs for statements have restricted forms.

S1 ; S2

IF E then S1 else S2                           do S1 while E

 We define a portion of a flow graph called a region to be a set of nodes N that includes a

header, which dominates all other nodes in the region. All edges between nodes in N are

in the region, except for some that enter the header.

 The portion of flow graph corresponding to a statement S is a region that obeys the

further restriction that control can flow to just one outside block when it leaves the

region.

S1

S1 S2

S2

S1

If E goto s1

If E goto s1



 We say that the beginning points of the dummy blocks at the entry and exit of a

statement’s region are the beginning and end points, respectively, of the statement. The

equations are inductive, or syntax-directed, definition of the sets in[S], out[S], gen[S],

and kill[S] for all statements S.

 gen[S] is the set of definitions “generated” by S while kill[S]  is the set of definitions

that never reach the end of S.

 Consider the following data-flow equations for reaching definitions :

i )

gen [S] = { d }

kill [S] = Da – { d }

out [S] = gen [S] U ( in[S] – kill[S] )

 Observe the rules for a single assignment of variable a. Surely that assignment is a

definition of a, say d. Thus

Gen[S]={d}

 On the other hand, d “kills” all other definitions of a, so we write

Kill[S] = Da – {d}

Where, Da is the set of all definitions in the program for variable a.

ii )

gen[S]=gen[S2] U (gen[S1]-kill[S2])

Kill[S] = kill[S2] U (kill[S1] – gen[S2])

in [S1] = in [S]

in [S2] = out [S1]

out [S] = out [S2]

S d :  a : = b + c

S S1

S2



 Under what circumstances is definition d generated by S=S1; S2? First of all, if it is

generated by S2, then it is surely generated by S. if d is generated by S1, it will reach the

end of S provided it is not killed by S2. Thus, we write

gen[S]=gen[S2] U (gen[S1]-kill[S2])

 Similar reasoning applies to the killing of a definition, so we have

Kill[S] = kill[S2] U (kill[S1] – gen[S2])

Conservative estimation of data-flow information:

 There is a subtle miscalculation in the rules for gen and kill. We have made the

assumption that the conditional expression E in the if and do statements are

“uninterpreted”; that is, there exists inputs to the program that make their branches go

either way.

 We assume that any graph-theoretic path in the flow graph is also an execution path, i.e.,

a path that is executed when the program is run with least one possible input.

 When we compare the computed gen with the “true” gen we discover that the true gen is

always a subset of the computed gen. on the other hand, the true kill is always a superset

of the computed kill.

 These containments hold even after we consider the other rules. It is natural to wonder

whether these differences between the true and computed gen and kill sets present a

serious obstacle to data-flow analysis. The answer lies in the use intended for these data.

 Overestimating the set of definitions reaching a point does not seem serious; it merely

stops us from doing an optimization that we could legitimately do. On the other hand,

underestimating the set of definitions is a fatal error; it could lead us into making a

change in the program that changes what the program computes. For the case of reaching

definitions, then, we call a set of definitions safe or conservative if the estimate is a

superset of the true set of reaching definitions. We call the estimate unsafe, if it is not

necessarily a superset of the truth.

 Returning now to the implications of safety on the estimation of gen and kill for reaching

definitions, note that our discrepancies, supersets for gen and subsets for kill are both in

the safe direction. Intuitively, increasing gen adds to the set of definitions that can reach a

point, and cannot prevent a definition from reaching a place that it truly reached.

Decreasing kill can only increase the set of definitions reaching any given point.

Computation of in and out:



 Many data-flow problems can be solved by synthesized translations similar to those used

to compute gen and kill. It can be used, for example, to determine loop-invariant

computations.

 However, there are other kinds of data-flow information, such as the reaching-definitions

problem. It turns out that in is an inherited attribute, and out is a synthesized attribute

depending on in. we intend that  in[S] be the set of definitions reaching the beginning of

S, taking into account the flow of control throughout the entire program, including

statements outside of S or within which S is nested.

 The set out[S] is defined similarly for the end of s. it is important to note the distinction

between out[S] and gen[S]. The latter is the set of definitions that reach the end of S

without following paths outside S.

 Assuming we know in[S] we compute out by equation, that is

Out[S] = gen[S] U (in[S] - kill[S])

 Considering cascade of two statements S1; S2, as in the second case. We start by

observing in[S1]=in[S]. Then, we recursively compute out[S1], which gives us in[S2],

since a definition reaches the beginning of S2 if and only if it reaches the end of S1. Now

we can compute out[S2], and this set is equal to out[S].

 Considering if-statement we have conservatively assumed that control can follow either

branch, a definition reaches the beginning of S1 or S2 exactly when it reaches the

beginning of S.

In[S1] = in[S2] = in[S]

 If a definition reaches the end of S if and only if it reaches the end of one or both sub

statements; i.e,

Out[S]=out[S1] U out[S2]

Representation of sets:

 Sets of definitions, such as gen[S] and kill[S], can be represented compactly using bit

vectors. We assign a number to each definition of interest in the flow graph. Then bit

vector representing a set of definitions will have 1 in position I if and only if the

definition numbered I is in the set.

 The number of definition statement can be taken as the index of statement in an array

holding pointers to statements. However, not all definitions may be of interest during

global data-flow analysis. Therefore the number of definitions of interest will typically be

recorded in a separate table.

 A bit vector representation for sets also allows set operations to be implemented

efficiently. The union and intersection of two sets can be implemented by logical or and

logical and, respectively, basic operations in most systems-oriented programming



languages. The difference A-B of sets A and B can be implemented by taking the

complement of B and then using logical and to compute A             .

Local reaching definitions:

 Space for data-flow information can be traded for time, by saving information only at

certain points and, as needed, recomputing information at intervening points. Basic

blocks are usually treated as a unit during global flow analysis, with attention restricted to

only those points that are the beginnings of blocks.

 Since there are usually many more points than blocks, restricting our effort to blocks is a

significant savings. When needed, the reaching definitions for all points in a block can be

calculated from the reaching definitions for the beginning of a block.

Use-definition chains:

 It is often convenient to store the reaching definition information as” use-definition

chains” or “ud-chains”, which are lists, for each use of a variable, of all the definitions

that reaches that use. If a use of variable a in block B is preceded by no unambiguous

definition of a, then ud-chain for that use of a is the set of definitions in in[B] that are

definitions of a.in addition, if there are ambiguous definitions of a ,then all of these for

which no unambiguous definition of a lies between it and the use of a are on the ud-chain

for this use of a.

Evaluation order:

 The techniques for conserving space during attribute evaluation, also apply to the

computation of data-flow information using specifications. Specifically, the only

constraint on the evaluation order for the gen, kill, in and out sets for statements is that

imposed by dependencies between these sets. Having chosen an evaluation order, we are

free to release the space for a set after all uses of it have occurred.

 Earlier circular dependencies between attributes were not allowed, but we have seen that

data-flow equations may have circular dependencies.

General control flow:

 Data-flow analysis must take all control paths into account. If the control paths are

evident from the syntax, then data-flow equations can be set up and solved in a syntax-

directed manner.

 When programs can contain goto statements or even the more disciplined break and

continue statements, the approach we have taken must be modified to take the actual

control paths into account.

 Several approaches may be taken. The iterative method works arbitrary flow graphs.

Since the flow graphs obtained in the presence of break and continue statements are

reducible, such constraints can be handled systematically using the interval-based

methods



 However, the syntax-directed approach need not be abandoned when break and continue

statements are allowed.

CODE IMPROVIG TRANSFORMATIONS

 Algorithms for performing the code improving transformations rely on data-flow

information. Here we consider common sub-expression elimination, copy propagation and

transformations for moving loop invariant computations out of loops and for eliminating

induction variables.

 Global transformations are not substitute for local transformations; both must be performed.

Elimination of global common sub expressions:

 The available expressions data-flow problem discussed in the last section allows us to

determine if an expression at point p in a flow graph is a common sub-expression. The

following algorithm formalizes the intuitive ideas presented for eliminating common sub-

expressions.

 ALGORITHM: Global common sub expression elimination.

INPUT: A flow graph with available expression information.

OUTPUT: A revised flow graph.

METHOD: For every statement s of the form x := y+z
6

such that y+z is available at the

beginning of block and neither y nor r z is defined prior to statement s in that block,

do the following.

 To discover the evaluations of y+z that reach s’s block, we follow flow graph

edges, searching backward from s’s block. However, we do not go through

any block that evaluates y+z. The last evaluation of y+z in each block

encountered is an evaluation of y+z that reaches s.

 Create new variable u.

 Replace each statement w: =y+z found in (1) by

u : = y + z

w : = u

 Replace statement s by x:=u.

 Some remarks about this algorithm are in order.

 The search in step(1) of the algorithm for the evaluations of y+z that reach statement s

can also be formulated as a data-flow analysis problem. However, it does not make sense

to solve it for all expressions y+z and all statements or blocks because too much

irrelevant information is gathered.



 Not all changes made by algorithm are improvements. We might wish to limit the

number of different evaluations reaching s found in step (1), probably to one.

 Algorithm will miss the fact that a*z and c*z must have the same value in

a :=x+y                               c :=x+y

vs

b :=a*z                               d :=c*z

 Because this simple approach to common sub expressions considers only the literal

expressions themselves, rather than the values computed by expressions.

Copy propagation:

 Various algorithms introduce copy statements such as x :=copies may also be generated

directly by the intermediate code generator, although most of these involve temporaries

local to one block and can be removed by the dag construction. We may substitute y for x

in all these places, provided the following conditions are met every such use u of x.

 Statement s must be the only definition of x reaching u.

 On every path from s to including paths that go through u several times, there are no

assignments to y.

 Condition (1) can be checked using ud-changing information. We shall set up a new data-

flow analysis problem in which in[B] is the set of copies s: x:=y such that every path

from initial node to the beginning of B contains the statement s, and subsequent to the

last occurrence of s, there are no assignments to y.

 ALGORITHM: Copy propagation.

INPUT: a flow graph G, with ud-chains giving the definitions reaching block B, and

with c_in[B] representing the solution to equations that is the set of copies x:=y that

reach block B along every path, with no assignment to x or y following the last

occurrence of x:=y   on the path. We also need ud-chains giving the uses of each

definition.

OUTPUT: A revised flow graph.

METHOD: For each copy s : x:=y do the following:

 Determine those uses of x that are reached by this definition of namely, s: x: =y.

 Determine whether for every use of  x found in (1) , s is in c_in[B], where B is the

block of this particular use, and moreover, no definitions of x or y occur prior to this

use of x within B. Recall that if s is in c_in[B]then s is the only definition of x that

reaches B.



 If s meets the conditions of (2), then remove s and replace all uses of x found in (1)

by y.

Detection of loop-invariant computations:

 Ud-chains can be used to detect those computations in a loop that are loop-invariant, that

is, whose value does not change as long as control stays within the loop. Loop is a region

consisting of set of blocks with a header that dominates all the other blocks, so the only

way to enter the loop is through the header.

 If an assignment x := y+z is at a position in the loop where all possible definitions of y

and z are outside the loop, then y+z is loop-invariant because its value will be the same

each time x:=y+z is encountered.  Having recognized that value of x will not change, consider v

:= x+w, where w could only have been defined outside the loop, then x+w is also loop-invariant.

 ALGORITHM: Detection of loop-invariant computations.

INPUT:  A loop L consisting of a set of basic blocks, each block containing sequence

of three-address statements. We assume ud-chains are available for the individual

statements.

OUTPUT: the set of three-address statements that compute the same value each time

executed, from the time control enters the loop L until control next leaves L.

METHOD: we shall give a rather informal specification of the algorithm, trusting

that the principles will be clear.

 Mark “invariant” those statements whose operands are all either constant or have

all their reaching definitions outside L.

 Repeat step (3) until at some repetition no new statements are marked “invariant”.

 Mark “invariant” all those statements not previously so marked all of whose

operands either are constant, have all their reaching definitions outside L, or have

exactly one reaching definition, and that definition is a statement in L marked

invariant.

Performing code motion:

 Having found the invariant statements within a loop, we can apply to some of them an

optimization known as code motion, in which the statements are moved to pre-header of

the loop. The following three conditions ensure that code motion does not change what

the program computes. Consider s: x: =y+z.

 The block containing s dominates all exit nodes of the loop, where an exit of a loop is a

node with a successor not in the loop.

 There is no other statement in the loop that assigns to x. Again, if x is a temporary

assigned only once, this condition is surely satisfied and need not be changed.



 No use of x in the loop is reached by any definition of x other than s. This condition too

will be satisfied, normally, if x is temporary.

 ALGORITHM: Code motion.

INPUT: A loop L with ud-chaining information and dominator information.

OUTPUT: A revised version of the loop with a pre-header and some statements

moved to the pre-header.

METHOD:

 Use loop-invariant computation algorithm to find loop-invariant statements.

 For each statement s defining x found in step(1), check:

i) That it is in a block that dominates all exits of  L,

ii) That x is not defined elsewhere in L, and

iii) That all uses in L of x can only be reached by the definition of x in statement

s.

 Move, in the order found by loop-invariant algorithm, each statement s found in

(1) and meeting conditions (2i), (2ii), (2iii) , to a newly created pre-header,

provided any operands of s that are defined in loop L have previously had their

definition statements moved to the pre-header.

 To understand why no change to what the program computes can occur, condition (2i)

and (2ii) of this algorithm assure that the value of x computed at s must be the value of x

after any exit block of L. When we move s to a pre-header, s will still be the definition of

x that reaches the end of any exit block of L. Condition (2iii) assures that any uses of x

within L did, and will continue to, use the value of x computed by s.

Alternative code motion strategies:

 The condition (1) can be relaxed if we are willing to take the risk that we may actually

increase the running time of the program a bit; of course, we never change what the

program computes. The relaxed version of code motion condition (1) is that we may

move a statement s assigning x only if:

1’. The block containing s either dominates all exists of the loop, or x is not used outside

the loop. For example, if x is a temporary variable, we can be sure that the value will

be used only in its own block.

 If code motion algorithm is modified to use condition (1’), occasionally the running time

will increase, but we can expect to do reasonably well on the average. The modified

algorithm may move to pre-header certain computations that may not be executed in the



loop. Not only does this risk slowing down the program significantly, it may also cause

an error in certain circumstances.

 Even if none of the conditions of (2i), (2ii), (2iii) of code motion algorithm are met by an

assignment x: =y+z, we can still take the computation y+z outside a loop. Create a new

temporary t, and set t: =y+z in the pre-header. Then replace x: =y+z by x: =t in the loop.

In many cases we can propagate out the copy statement x: = t.

Maintaining data-flow information after code motion:

 The transformations of code motion algorithm do not change ud-chaining information,

since by condition (2i), (2ii), and (2iii), all uses of the variable assigned by a moved

statement s that were reached by s are still reached by s from its new position.

 Definitions of variables used by s are either outside L, in which case they reach the pre-

header, or they are inside L, in which case by step (3) they were moved to pre-header

ahead of s.

 If the ud-chains are represented by lists of pointers to pointers to statements, we can

maintain ud-chains when we move statement s by simply changing the pointer to s when

we move it. That is, we create for each statement s pointer ps, which always points to s.

 We put the pointer on each ud-chain containing s. Then, no matter where we move s, we

have only to change ps , regardless of how many ud-chains s is on.

 The dominator information is changed slightly by code motion. The pre-header is now

the immediate dominator of the header, and the immediate dominator of the pre-header is

the node that formerly was the immediate dominator of the header. That is, the pre-header

is inserted into the dominator tree as the parent of the header.

Elimination of induction variable:

 A variable x is called an induction variable of a loop L if every time the variable x

changes values, it is incremented or decremented by some constant. Often, an induction

variable is incremented by the same constant each time around the loop, as in a loop

headed by for i := 1 to 10.

 However, our methods deal with variables that are incremented or decremented zero, one,

two, or more times as we go around a loop. The number of changes to an induction

variable may even differ at different iterations.

 A common situation is one in which an induction variable, say i, indexes an array, and

some other induction variable, say t, whose value is a linear function of i, is the actual

offset used to access the array. Often, the only use made of i is in the test for loop

termination. We can then get rid of i by replacing its test by one on t.

 We shall look for basic induction variables, which are those variables i whose only

assignments within loop L are of the form i := i+c or i-c, where c is a constant.

 ALGORITHM: Elimination of induction variables.



INPUT: A loop L with reaching definition information, loop-invariant computation

information and live variable information.

OUTPUT: A revised loop.

METHOD:

 Consider each basic induction variable i whose only uses are to compute other

induction variables in its family and in conditional branches. Take some j in i’s

family, preferably one such that c and d in its triple are as simple as possible and

modify each test that i appears in to use j instead. We assume in the following tat

c is positive. A test of the form ‘if i relop x goto B’, where x is not an induction

variable, is replaced by

r := c*x    /* r := x if c is 1. */

r := r+d    /* omit if d is 0 */

if j relop r goto B

where, r is a new temporary. The case ‘if x relop i goto B’ is handled

analogously. If there are two induction variables i1 and i2 in the test if i1 relop i2

goto B, then we check if both i1 and i2 can be replaced. The easy case is when we

have j1 with triple and j2 with triple, and c1=c2 and d1=d2. Then, i1 relop i2 is

equivalent to j1 relop j2.

 Now, consider each induction variable j for which a statement j: =s was

introduced. First check that there can be no assignment to s between the

introduced statement j :=s and any use of j. In the usual situation, j is used in the

block in which it is defined, simplifying this check; otherwise, reaching

definitions information, plus some graph analysis is needed to implement the

check. Then replace all uses of j by uses of s and delete statement j: =s.


