
Transaction

o The transaction is a set of logically related operation. It contains a group of tasks.

o A transaction is an action or series of actions. It is performed by a single user to perform

operations for accessing the contents of the database.
Example: Suppose an employee of bank transfers Rs 800 from X's account to Y's account. This
small transaction contains several low-level tasks:
X's Account

1. Open_Account(X)

2. Old_Balance = X.balance

3. New_Balance = Old_Balance - 800

4. X.balance = New_Balance

5. Close_Account(X)
Y's Account

1. Open_Account(Y)

2. Old_Balance = Y.balance

3. New_Balance = Old_Balance + 800

4. Y.balance = New_Balance

5. Close_Account(Y)

Operations of Transaction:
Following are the main operations of transaction:
44M
776Prime Ministers of India | List of Prime Minister of India (1947-2020)
Read(X): Read operation is used to read the value of X from the database and stores it in a buffer
in main memory.
Write(X): Write operation is used to write the value back to the database from the buffer.
Let's take an example to debit transaction from an account which consists of following
operations:

1. 1. R(X);

2. 2. X = X - 500;

3. 3. W(X);
Let's assume the value of X before starting of the transaction is 4000.

o The first operation reads X's value from database and stores it in a buffer.

o The second operation will decrease the value of X by 500. So buffer will contain 3500.

o The third operation will write the buffer's value to the database. So X's final value will be

3500.
But it may be possible that because of the failure of hardware, software or power, etc. that
transaction may fail before finished all the operations in the set.

For example: If in the above transaction, the debit transaction fails after executing operation 2
then X's value will remain 4000 in the database which is not acceptable by the bank.
To solve this problem, we have two important operations:
Commit: It is used to save the work done permanently.
Rollback: It is used to undo the work done.

Transaction property
The transaction has the four properties. These are used to maintain consistency in a database,
before and after the transaction.

Property of Transaction

1. Atomicity

2. Consistency

3. Isolation

4. Durability

Atomicity

o It states that all operations of the transaction take place at once if not, the transaction is

aborted.

o There is no midway, i.e., the transaction cannot occur partially. Each transaction is treated

as one unit and either run to completion or is not executed at all.
Atomicity involves the following two operations:
Abort: If a transaction aborts then all the changes made are not visible.

Commit: If a transaction commits then all the changes made are visible.
00:00/05:29
Example: Let's assume that following transaction T consisting of T1 and T2. A consists of Rs 600
and B consists of Rs 300. Transfer Rs 100 from account A to account B.

T1 T2

Read(A)
A:= A-100
Write(A)

Read(B)
Y:= Y+100
Write(B)

After completion of the transaction, A consists of Rs 500 and B consists of Rs 400.
If the transaction T fails after the completion of transaction T1 but before completion of
transaction T2, then the amount will be deducted from A but not added to B. This shows the
inconsistent database state. In order to ensure correctness of database state, the transaction
must be executed in entirety.

Consistency

o The integrity constraints are maintained so that the database is consistent before and

after the transaction.

o The execution of a transaction will leave a database in either its prior stable state or a

new stable state.

o The consistent property of database states that every transaction sees a consistent

database instance.

o The transaction is used to transform the database from one consistent state to another

consistent state.
For example: The total amount must be maintained before or after the transaction.

1. Total before T occurs = 600+300=900

2. Total after T occurs= 500+400=900
Therefore, the database is consistent. In the case when T1 is completed but T2 fails, then
inconsistency will occur.

Isolation

o It shows that the data which is used at the time of execution of a transaction cannot be

used by the second transaction until the first one is completed.

o In isolation, if the transaction T1 is being executed and using the data item X, then that

data item can't be accessed by any other transaction T2 until the transaction T1 ends.

o The concurrency control subsystem of the DBMS enforced the isolation property.

Durability

o The durability property is used to indicate the performance of the database's consistent

state. It states that the transaction made the permanent changes.

o They cannot be lost by the erroneous operation of a faulty transaction or by the system

failure. When a transaction is completed, then the database reaches a state known as the

consistent state. That consistent state cannot be lost, even in the event of a system's

failure.

o The recovery subsystem of the DBMS has the responsibility of Durability property.

States of Transaction
In a database, the transaction can be in one of the following states -

Active state

o The active state is the first state of every transaction. In this state, the transaction is being

executed.

o For example: Insertion or deletion or updating a record is done here. But all the records

are still not saved to the database.

Partially committed

o In the partially committed state, a transaction executes its final operation, but the data is

still not saved to the database.

o In the total mark calculation example, a final display of the total marks step is executed

in this state.

Committed
A transaction is said to be in a committed state if it executes all its operations successfully. In this
state, all the effects are now permanently saved on the database system.

Failed state

o If any of the checks made by the database recovery system fails, then the transaction is

said to be in the failed state.

o In the example of total mark calculation, if the database is not able to fire a query to fetch

the marks, then the transaction will fail to execute.

Aborted

o If any of the checks fail and the transaction has reached a failed state then the database

recovery system will make sure that the database is in its previous consistent state. If not

then it will abort or roll back the transaction to bring the database into a consistent state.

o If the transaction fails in the middle of the transaction then before executing the

transaction, all the executed transactions are rolled back to its consistent state.

o After aborting the transaction, the database recovery module will select one of the two

operations:

1. Re-start the transaction

2. Kill the transaction

Schedule
A series of operation from one transaction to another transaction is known as schedule. It is used
to preserve the order of the operation in each of the individual transaction.

1. Serial Schedule
The serial schedule is a type of schedule where one transaction is executed completely before
starting another transaction. In the serial schedule, when the first transaction completes its cycle,
then the next transaction is executed.
For example: Suppose there are two transactions T1 and T2 which have some operations. If it
has no interleaving of operations, then there are the following two possible outcomes:

1. Execute all the operations of T1 which was followed by all the operations of T2.

2. Execute all the operations of T1 which was followed by all the operations of T2.

o In the given (a) figure, Schedule A shows the serial schedule where T1 followed by T2.

o In the given (b) figure, Schedule B shows the serial schedule where T2 followed by T1.

2. Non-serial Schedule

o If interleaving of operations is allowed, then there will be non-serial schedule.

o It contains many possible orders in which the system can execute the individual

operations of the transactions.

o In the given figure (c) and (d), Schedule C and Schedule D are the non-serial schedules. It

has interleaving of operations.

3. Serializable schedule

o The serializability of schedules is used to find non-serial schedules that allow the

transaction to execute concurrently without interfering with one another.

o It identifies which schedules are correct when executions of the transaction have

interleaving of their operations.

o A non-serial schedule will be serializable if its result is equal to the result of its transactions

executed serially.

Here,
Schedule A and Schedule B are serial schedule.
Schedule C and Schedule D are Non-serial schedule.

Conflict Serializable Schedule

o A schedule is called conflict serializability if after swapping of non-conflicting operations,

it can transform into a serial schedule.

o The schedule will be a conflict serializable if it is conflict equivalent to a serial schedule.

Conflicting Operations
The two operations become conflicting if all conditions satisfy:

1. Both belong to separate transactions.

2. They have the same data item.

3. They contain at least one write operation.

Example:
Swapping is possible only if S1 and S2 are logically equal.

Here, S1 = S2. That means it is non-conflict.

Here, S1 ≠ S2. That means it is conflict.

Conflict Equivalent
In the conflict equivalent, one can be transformed to another by swapping non-conflicting
operations. In the given example, S2 is conflict equivalent to S1 (S1 can be converted to S2 by
swapping non-conflicting operations).
Two schedules are said to be conflict equivalent if and only if:

1. They contain the same set of the transaction.

2. If each pair of conflict operations are ordered in the same way.

Example:

Schedule S2 is a serial schedule because, in this, all operations of T1 are performed before starting
any operation of T2. Schedule S1 can be transformed into a serial schedule by swapping non-
conflicting operations of S1.
After swapping of non-conflict operations, the schedule S1 becomes:

T1 T2

Read(A)
Write(A)
Read(B)
Write(B)

Read(A)
Write(A)
Read(B)
Write(B)

Since, S1 is conflict serializable.

View Serializability

o A schedule will view serializable if it is view equivalent to a serial schedule.

o If a schedule is conflict serializable, then it will be view serializable.

o The view serializable which does not conflict serializable contains blind writes.

View Equivalent
Two schedules S1 and S2 are said to be view equivalent if they satisfy the following conditions:

1. Initial Read
An initial read of both schedules must be the same. Suppose two schedule S1 and S2. In schedule
S1, if a transaction T1 is reading the data item A, then in S2, transaction T1 should also read A.

Above two schedules are view equivalent because Initial read operation in S1 is done by T1 and
in S2 it is also done by T1.

2. Updated Read
In schedule S1, if Ti is reading A which is updated by Tj then in S2 also, Ti should read A which is
updated by Tj.

Above two schedules are not view equal because, in S1, T3 is reading A updated by T2 and in S2,
T3 is reading A updated by T1.

3. Final Write
A final write must be the same between both the schedules. In schedule S1, if a transaction T1
updates A at last then in S2, final writes operations should also be done by T1.

Above two schedules is view equal because Final write operation in S1 is done by T3 and in S2,
the final write operation is also done by T3.
Example:

Schedule S
With 3 transactions, the total number of possible schedule

1. = 3! = 6

2. S1 = <T1 T2 T3>

3. S2 = <T1 T3 T2>

4. S3 = <T2 T3 T1>

5. S4 = <T2 T1 T3>

6. S5 = <T3 T1 T2>

7. S6 = <T3 T2 T1>
Taking first schedule S1:

Schedule S1
Step 1: final updation on data items
In both schedules S and S1, there is no read except the initial read that's why we don't need to
check that condition.
Step 2: Initial Read
The initial read operation in S is done by T1 and in S1, it is also done by T1.
Step 3: Final Write
The final write operation in S is done by T3 and in S1, it is also done by T3. So, S and S1 are view
Equivalent.
The first schedule S1 satisfies all three conditions, so we don't need to check another schedule.
Hence, view equivalent serial schedule is:

1. T1 → T2 → T3

DBMS Concurrency Control
Concurrency Control is the management procedure that is required for controlling concurrent
execution of the operations that take place on a database.
But before knowing about concurrency control, we should know about concurrent execution.

Concurrent Execution in DBMS

o In a multi-user system, multiple users can access and use the same database at one time,

which is known as the concurrent execution of the database. It means that the same

database is executed simultaneously on a multi-user system by different users.

o While working on the database transactions, there occurs the requirement of using the

database by multiple users for performing different operations, and in that case,

concurrent execution of the database is performed.

o The thing is that the simultaneous execution that is performed should be done in an

interleaved manner, and no operation should affect the other executing operations, thus

maintaining the consistency of the database. Thus, on making the concurrent execution

of the transaction operations, there occur several challenging problems that need to be

solved.

Problems with Concurrent Execution
In a database transaction, the two main operations are READ and WRITE operations. So, there is
a need to manage these two operations in the concurrent execution of the transactions as if
these operations are not performed in an interleaved manner, and the data may become
inconsistent. So, the following problems occur with the Concurrent Execution of the operations:

Problem 1: Lost Update Problems (W - W Conflict)
The problem occurs when two different database transactions perform the read/write operations
on the same database items in an interleaved manner (i.e., concurrent execution) that makes the
values of the items incorrect hence making the database inconsistent.
For example:
Consider the below diagram where two transactions TX and TY, are performed on the same
account A where the balance of account A is $300.

o At time t1, transaction TX reads the value of account A, i.e., $300 (only read).

o At time t2, transaction TX deducts $50 from account A that becomes $250 (only deducted

and not updated/write).

o Alternately, at time t3, transaction TY reads the value of account A that will be $300 only

because TX didn't update the value yet.

o At time t4, transaction TY adds $100 to account A that becomes $400 (only added but not

updated/write).

o At time t6, transaction TX writes the value of account A that will be updated as $250 only,

as TY didn't update the value yet.

o Similarly, at time t7, transaction TY writes the values of account A, so it will write as done

at time t4 that will be $400. It means the value written by TX is lost, i.e., $250 is lost.
Hence data becomes incorrect, and database sets to inconsistent.

Dirty Read Problems (W-R Conflict)
The dirty read problem occurs when one transaction updates an item of the database, and
somehow the transaction fails, and before the data gets rollback, the updated database item is
accessed by another transaction. There comes the Read-Write Conflict between both
transactions.

For example:
Consider two transactions TX and TY in the below diagram performing read/write operations
on account A where the available balance in account A is $300:

o At time t1, transaction TX reads the value of account A, i.e., $300.

o At time t2, transaction TX adds $50 to account A that becomes $350.

o At time t3, transaction TX writes the updated value in account A, i.e., $350.

o Then at time t4, transaction TY reads account A that will be read as $350.

o Then at time t5, transaction TX rollbacks due to server problem, and the value changes

back to $300 (as initially).

o But the value for account A remains $350 for transaction TY as committed, which is the

dirty read and therefore known as the Dirty Read Problem.

Unrepeatable Read Problem (W-R Conflict)
Also known as Inconsistent Retrievals Problem that occurs when in a transaction, two different
values are read for the same database item.
For example:
Consider two transactions, TX and TY, performing the read/write operations on account A,
having an available balance = $300. The diagram is shown below:

o At time t1, transaction TX reads the value from account A, i.e., $300.

o At time t2, transaction TY reads the value from account A, i.e., $300.

o At time t3, transaction TY updates the value of account A by adding $100 to the available

balance, and then it becomes $400.

o At time t4, transaction TY writes the updated value, i.e., $400.

o After that, at time t5, transaction TX reads the available value of account A, and that will

be read as $400.

o It means that within the same transaction TX, it reads two different values of account A,

i.e., $ 300 initially, and after updation made by transaction TY, it reads $400. It is an

unrepeatable read and is therefore known as the Unrepeatable read problem.
Thus, in order to maintain consistency in the database and avoid such problems that take place
in concurrent execution, management is needed, and that is where the concept of Concurrency
Control comes into role.

Concurrency Control
Concurrency Control is the working concept that is required for controlling and managing the
concurrent execution of database operations and thus avoiding the inconsistencies in the

database. Thus, for maintaining the concurrency of the database, we have the concurrency
control protocols.

Concurrency Control Protocols
The concurrency control protocols ensure the atomicity, consistency, isolation,
durability and serializability of the concurrent execution of the database transactions. Therefore,
these protocols are categorized as:

o Lock Based Concurrency Control Protocol

o Time Stamp Concurrency Control Protocol

o Validation Based Concurrency Control Protocol

o Multiple Granularity

Lock-Based Protocol
In this type of protocol, any transaction cannot read or write data until it acquires an appropriate
lock on it. There are two types of lock:
1. Shared lock:

o It is also known as a Read-only lock. In a shared lock, the data item can only read by the

transaction.

o It can be shared between the transactions because when the transaction holds a lock,

then it can't update the data on the data item.
2. Exclusive lock:

o In the exclusive lock, the data item can be both reads as well as written by the transaction.

o This lock is exclusive, and in this lock, multiple transactions do not modify the same data

simultaneously.

There are four types of lock protocols available:

1. Simplistic lock protocol
It is the simplest way of locking the data while transaction. Simplistic lock-based protocols allow
all the transactions to get the lock on the data before insert or delete or update on it. It will unlock
the data item after completing the transaction.

2. Pre-claiming Lock Protocol

o Pre-claiming Lock Protocols evaluate the transaction to list all the data items on which

they need locks.

o Before initiating an execution of the transaction, it requests DBMS for all the lock on all

those data items.

o If all the locks are granted then this protocol allows the transaction to begin. When the

transaction is completed then it releases all the lock.

o If all the locks are not granted then this protocol allows the transaction to rolls back and

waits until all the locks are granted.

3. Two-phase locking (2PL)

o The two-phase locking protocol divides the execution phase of the transaction into three

parts.

o In the first part, when the execution of the transaction starts, it seeks permission for the

lock it requires.

o In the second part, the transaction acquires all the locks. The third phase is started as

soon as the transaction releases its first lock.

o In the third phase, the transaction cannot demand any new locks. It only releases the

acquired locks.

There are two phases of 2PL:
Growing phase: In the growing phase, a new lock on the data item may be acquired by the
transaction, but none can be released.
Shrinking phase: In the shrinking phase, existing lock held by the transaction may be released,
but no new locks can be acquired.
In the below example, if lock conversion is allowed then the following phase can happen:

1. Upgrading of lock (from S(a) to X (a)) is allowed in growing phase.

2. Downgrading of lock (from X(a) to S(a)) must be done in shrinking phase.

Example:

The following way shows how unlocking and locking work with 2-PL.
Transaction T1:

o Growing phase: from step 1-3

o Shrinking phase: from step 5-7

o Lock point: at 3
Transaction T2:

o Growing phase: from step 2-6

o Shrinking phase: from step 8-9

o Lock point: at 6

4. Strict Two-phase locking (Strict-2PL)

o The first phase of Strict-2PL is similar to 2PL. In the first phase, after acquiring all the locks,

the transaction continues to execute normally.

o The only difference between 2PL and strict 2PL is that Strict-2PL does not release a lock

after using it.

o Strict-2PL waits until the whole transaction to commit, and then it releases all the locks

at a time.

o Strict-2PL protocol does not have shrinking phase of lock release.

It does not have cascading abort as 2PL does.

Timestamp Ordering Protocol

o The Timestamp Ordering Protocol is used to order the transactions based on their

Timestamps. The order of transaction is nothing but the ascending order of the

transaction creation.

o The priority of the older transaction is higher that's why it executes first. To determine

the timestamp of the transaction, this protocol uses system time or logical counter.

o The lock-based protocol is used to manage the order between conflicting pairs among

transactions at the execution time. But Timestamp based protocols start working as soon

as a transaction is created.

o Let's assume there are two transactions T1 and T2. Suppose the transaction T1 has

entered the system at 007 times and transaction T2 has entered the system at 009 times.

T1 has the higher priority, so it executes first as it is entered the system first.

o The timestamp ordering protocol also maintains the timestamp of last 'read' and 'write'

operation on a data.
Basic Timestamp ordering protocol works as follows:
1. Check the following condition whenever a transaction Ti issues a Read (X) operation:

o If W_TS(X) >TS(Ti) then the operation is rejected.

o If W_TS(X) <= TS(Ti) then the operation is executed.

o Timestamps of all the data items are updated.
2. Check the following condition whenever a transaction Ti issues a Write(X) operation:

o If TS(Ti) < R_TS(X) then the operation is rejected.

o If TS(Ti) < W_TS(X) then the operation is rejected and Ti is rolled back otherwise the

operation is executed.
Where,
TS(TI) denotes the timestamp of the transaction Ti.
R_TS(X) denotes the Read time-stamp of data-item X.
W_TS(X) denotes the Write time-stamp of data-item X.

Advantages and Disadvantages of TO protocol:

o TO protocol ensures serializability since the precedence graph is as follows:

o TS protocol ensures freedom from deadlock that means no transaction ever waits.

o But the schedule may not be recoverable and may not even be cascade- free.

Validation Based Protocol
Validation phase is also known as optimistic concurrency control technique. In the validation
based protocol, the transaction is executed in the following three phases:

1. Read phase: In this phase, the transaction T is read and executed. It is used to read the

value of various data items and stores them in temporary local variables. It can perform

all the write operations on temporary variables without an update to the actual database.

2. Validation phase: In this phase, the temporary variable value will be validated against the

actual data to see if it violates the serializability.

3. Write phase: If the validation of the transaction is validated, then the temporary results

are written to the database or system otherwise the transaction is rolled back.
Here each phase has the following different timestamps:
Start(Ti): It contains the time when Ti started its execution.
Validation (Ti): It contains the time when Ti finishes its read phase and starts its validation phase.
Finish(Ti): It contains the time when Ti finishes its write phase.

o This protocol is used to determine the time stamp for the transaction for serialization

using the time stamp of the validation phase, as it is the actual phase which determines

if the transaction will commit or rollback.

o Hence TS(T) = validation(T).

o The serializability is determined during the validation process. It can't be decided in

advance.

o While executing the transaction, it ensures a greater degree of concurrency and also less

number of conflicts.

o Thus it contains transactions which have less number of rollbacks.

Thomas write Rule
Thomas Write Rule provides the guarantee of serializability order for the protocol. It improves
the Basic Timestamp Ordering Algorithm.

The basic Thomas write rules are as follows:

o If TS(T) < R_TS(X) then transaction T is aborted and rolled back, and operation is rejected.

o If TS(T) < W_TS(X) then don't execute the W_item(X) operation of the transaction and

continue processing.

o If neither condition 1 nor condition 2 occurs, then allowed to execute the WRITE

operation by transaction Ti and set W_TS(X) to TS(T).
If we use the Thomas write rule then some serializable schedule can be permitted that does not
conflict serializable as illustrate by the schedule in a given figure:

Figure: A Serializable Schedule that is not Conflict Serializable
Skip Ad
In the above figure, T1's read and precedes T1's write of the same data item. This schedule does
not conflict serializable.
Thomas write rule checks that T2's write is never seen by any transaction. If we delete the write
operation in transaction T2, then conflict serializable schedule can be obtained which is shown
in below figure.

Figure: A Conflict Serializable Schedule

Multiple Granularity
Let's start by understanding the meaning of granularity.
Granularity: It is the size of data item allowed to lock.

Multiple Granularity:

o It can be defined as hierarchically breaking up the database into blocks which can be

locked.

o The Multiple Granularity protocol enhances concurrency and reduces lock overhead.

o It maintains the track of what to lock and how to lock.

o It makes easy to decide either to lock a data item or to unlock a data item. This type of

hierarchy can be graphically represented as a tree.

For example: Consider a tree which has four levels of nodes.

o The first level or higher level shows the entire database.

o The second level represents a node of type area. The higher level database consists of

exactly these areas.

o The area consists of children nodes which are known as files. No file can be present in

more than one area.

o Finally, each file contains child nodes known as records. The file has exactly those records

that are its child nodes. No records represent in more than one file.

o Hence, the levels of the tree starting from the top level are as follows:

1. Database

2. Area

3. File

4. Record

In this example, the highest level shows the entire database. The levels below are file, record,
and fields.
Keep Watching
There are three additional lock modes with multiple granularity:

Intention Mode Lock
Intention-shared (IS): It contains explicit locking at a lower level of the tree but only with shared
locks.
Intention-Exclusive (IX): It contains explicit locking at a lower level with exclusive or shared locks.

Shared & Intention-Exclusive (SIX): In this lock, the node is locked in shared mode, and some
node is locked in exclusive mode by the same transaction.
Compatibility Matrix with Intention Lock Modes: The below table describes the compatibility
matrix for these lock modes:

It uses the intention lock modes to ensure serializability. It requires that if a transaction attempts
to lock a node, then that node must follow these protocols:

o Transaction T1 should follow the lock-compatibility matrix.

o Transaction T1 firstly locks the root of the tree. It can lock it in any mode.

o If T1 currently has the parent of the node locked in either IX or IS mode, then the

transaction T1 will lock a node in S or IS mode only.

o If T1 currently has the parent of the node locked in either IX or SIX modes, then the

transaction T1 will lock a node in X, SIX, or IX mode only.

o If T1 has not previously unlocked any node only, then the Transaction T1 can lock a node.

o If T1 currently has none of the children of the node-locked only, then Transaction T1 will

unlock a node.
Observe that in multiple-granularity, the locks are acquired in top-down order, and locks must
be released in bottom-up order.

o If transaction T1 reads record Ra9 in file Fa, then transaction T1 needs to lock the database,

area A1 and file Fa in IX mode. Finally, it needs to lock Ra2 in S mode.

o If transaction T2 modifies record Ra9 in file Fa, then it can do so after locking the database,

area A1 and file Fa in IX mode. Finally, it needs to lock the Ra9 in X mode.

o If transaction T3 reads all the records in file Fa, then transaction T3 needs to lock the

database, and area A in IS mode. At last, it needs to lock Fa in S mode.

o If transaction T4 reads the entire database, then T4 needs to lock the database in S mode.

Recovery with Concurrent Transaction

o Whenever more than one transaction is being executed, then the interleaved of logs

occur. During recovery, it would become difficult for the recovery system to backtrack all

logs and then start recovering.

o To ease this situation, 'checkpoint' concept is used by most DBMS.

As we have discussed checkpoint in Transaction Processing Concept of this tutorial, so you can
go through the concepts again to make things more clear.

File Organization

o The File is a collection of records. Using the primary key, we can access the records. The

type and frequency of access can be determined by the type of file organization which

was used for a given set of records.

o File organization is a logical relationship among various records. This method defines how

file records are mapped onto disk blocks.

o File organization is used to describe the way in which the records are stored in terms of

blocks, and the blocks are placed on the storage medium.

o The first approach to map the database to the file is to use the several files and store only

one fixed length record in any given file. An alternative approach is to structure our files

so that we can contain multiple lengths for records.

o Files of fixed length records are easier to implement than the files of variable length

records.

Objective of file organization

o It contains an optimal selection of records, i.e., records can be selected as fast as possible.

o To perform insert, delete or update transaction on the records should be quick and easy.

o The duplicate records cannot be induced as a result of insert, update or delete.

o For the minimal cost of storage, records should be stored efficiently.

Types of file organization:
File organization contains various methods. These particular methods have pros and cons on the
basis of access or selection. In the file organization, the programmer decides the best-suited file
organization method according to his requirement.
Types of file organization are as follows:

https://www.javatpoint.com/dbms-checkpoint

o Sequential file organization

o Heap file organization

o Hash file organization

o B+ file organization

o Indexed sequential access method (ISAM)

o Cluster file organization

Sequential File Organization
This method is the easiest method for file organization. In this method, files are stored
sequentially. This method can be implemented in two ways:

1. Pile File Method:

o It is a quite simple method. In this method, we store the record in a sequence, i.e., one

after another. Here, the record will be inserted in the order in which they are inserted

into tables.

o In case of updating or deleting of any record, the record will be searched in the memory

blocks. When it is found, then it will be marked for deleting, and the new record is

inserted.

Insertion of the new record:
Suppose we have four records R1, R3 and so on upto R9 and R8 in a sequence. Hence, records
are nothing but a row in the table. Suppose we want to insert a new record R2 in the sequence,
then it will be placed at the end of the file. Here, records are nothing but a row in any table.

2. Sorted File Method:

o In this method, the new record is always inserted at the file's end, and then it will sort the

sequence in ascending or descending order. Sorting of records is based on any primary

key or any other key.

https://www.javatpoint.com/dbms-sequential-file-organization
https://www.javatpoint.com/dbms-heap-file-organization
https://www.javatpoint.com/dbms-hash-file-organization
https://www.javatpoint.com/dbms-b-plus-file-organization
https://www.javatpoint.com/dbms-indexed-sequential-access-method
https://www.javatpoint.com/dbms-cluster-file-organization

o In the case of modification of any record, it will update the record and then sort the file,

and lastly, the updated record is placed in the right place.

Insertion of the new record:
Suppose there is a preexisting sorted sequence of four records R1, R3 and so on upto R6 and R7.
Suppose a new record R2 has to be inserted in the sequence, then it will be inserted at the end
of the file, and then it will sort the sequence.

Pros of sequential file organization

o It contains a fast and efficient method for the huge amount of data.

o In this method, files can be easily stored in cheaper storage mechanism like magnetic

tapes.

o It is simple in design. It requires no much effort to store the data.

o This method is used when most of the records have to be accessed like grade calculation

of a student, generating the salary slip, etc.

o This method is used for report generation or statistical calculations.

Cons of sequential file organization

o It will waste time as we cannot jump on a particular record that is required but we have

to move sequentially which takes our time.

o Sorted file method takes more time and space for sorting the records.

Heap file organization

o It is the simplest and most basic type of organization. It works with data blocks. In heap

file organization, the records are inserted at the file's end. When the records are inserted,

it doesn't require the sorting and ordering of records.

o When the data block is full, the new record is stored in some other block. This new data

block need not to be the very next data block, but it can select any data block in the

memory to store new records. The heap file is also known as an unordered file.

o In the file, every record has a unique id, and every page in a file is of the same size. It is

the DBMS responsibility to store and manage the new records.

Insertion of a new record
Suppose we have five records R1, R3, R6, R4 and R5 in a heap and suppose we want to insert a
new record R2 in a heap. If the data block 3 is full then it will be inserted in any of the database
selected by the DBMS, let's say data block 1.

If we want to search, update or delete the data in heap file organization, then we need to traverse
the data from staring of the file till we get the requested record.

If the database is very large then searching, updating or deleting of record will be time-consuming
because there is no sorting or ordering of records. In the heap file organization, we need to check
all the data until we get the requested record.

Pros of Heap file organization

o It is a very good method of file organization for bulk insertion. If there is a large number

of data which needs to load into the database at a time, then this method is best suited.

o In case of a small database, fetching and retrieving of records is faster than the sequential

record.

Cons of Heap file organization

o This method is inefficient for the large database because it takes time to search or modify

the record.

o

o This method is inefficient for large databases.

Hash File Organization
Hash File Organization uses the computation of hash function on some fields of the records. The
hash function's output determines the location of disk block where the records are to be placed.

When a record has to be received using the hash key columns, then the address is generated,
and the whole record is retrieved using that address. In the same way, when a new record has to
be inserted, then the address is generated using the hash key and record is directly inserted. The
same process is applied in the case of delete and update.
In this method, there is no effort for searching and sorting the entire file. In this method, each
record will be stored randomly in the memory.

B+ File Organization

o B+ tree file organization is the advanced method of an indexed sequential access method.

It uses a tree-like structure to store records in File.

o It uses the same concept of key-index where the primary key is used to sort the records.

For each primary key, the value of the index is generated and mapped with the record.

o The B+ tree is similar to a binary search tree (BST), but it can have more than two children.

In this method, all the records are stored only at the leaf node. Intermediate nodes act as

a pointer to the leaf nodes. They do not contain any records.

The above B+ tree shows that:

o There is one root node of the tree, i.e., 25.

o There is an intermediary layer with nodes. They do not store the actual record. They have

only pointers to the leaf node.

o The nodes to the left of the root node contain the prior value of the root and nodes to

the right contain next value of the root, i.e., 15 and 30 respectively.

o There is only one leaf node which has only values, i.e., 10, 12, 17, 20, 24, 27 and 29.

o Searching for any record is easier as all the leaf nodes are balanced.

o In this method, searching any record can be traversed through the single path and

accessed easily.

Pros of B+ tree file organization

o In this method, searching becomes very easy as all the records are stored only in the leaf

nodes and sorted the sequential linked list.

o Traversing through the tree structure is easier and faster.

o The size of the B+ tree has no restrictions, so the number of records can increase or

decrease and the B+ tree structure can also grow or shrink.

o It is a balanced tree structure, and any insert/update/delete does not affect the

performance of tree.

Cons of B+ tree file organization

o This method is inefficient for the static method.

Indexed sequential access method (ISAM)
ISAM method is an advanced sequential file organization. In this method, records are stored in
the file using the primary key. An index value is generated for each primary key and mapped with
the record. This index contains the address of the record in the file.

If any record has to be retrieved based on its index value, then the address of the data block is
fetched and the record is retrieved from the memory.

Pros of ISAM:

o In this method, each record has the address of its data block, searching a record in a huge

database is quick and easy.

o This method supports range retrieval and partial retrieval of records. Since the index is

based on the primary key values, we can retrieve the data for the given range of value. In

the same way, the partial value can also be easily searched, i.e., the student name starting

with 'JA' can be easily searched.

Cons of ISAM

o This method requires extra space in the disk to store the index value.

o When the new records are inserted, then these files have to be reconstructed to maintain

the sequence.

o When the record is deleted, then the space used by it needs to be released. Otherwise,

the performance of the database will slow down.

B+ Tree

o The B+ tree is a balanced binary search tree. It follows a multi-level index format.

o In the B+ tree, leaf nodes denote actual data pointers. B+ tree ensures that all leaf nodes

remain at the same height.

o In the B+ tree, the leaf nodes are linked using a link list. Therefore, a B+ tree can support

random access as well as sequential access.

Structure of B+ Tree

o In the B+ tree, every leaf node is at equal distance from the root node. The B+ tree is of

the order n where n is fixed for every B+ tree.

o It contains an internal node and leaf node.

Internal node

o An internal node of the B+ tree can contain at least n/2 record pointers except the root

node.

o At most, an internal node of the tree contains n pointers.

Leaf node

o The leaf node of the B+ tree can contain at least n/2 record pointers and n/2 key values.

o At most, a leaf node contains n record pointer and n key values.

o Every leaf node of the B+ tree contains one block pointer P to point to next leaf node.

Searching a record in B+ Tree
Suppose we have to search 55 in the below B+ tree structure. First, we will fetch for the
intermediary node which will direct to the leaf node that can contain a record for 55.
So, in the intermediary node, we will find a branch between 50 and 75 nodes. Then at the end,
we will be redirected to the third leaf node. Here DBMS will perform a sequential search to find
55.

B+ Tree Insertion
Suppose we want to insert a record 60 in the below structure. It will go to the 3rd leaf node after
55. It is a balanced tree, and a leaf node of this tree is already full, so we cannot insert 60 there.
In this case, we have to split the leaf node, so that it can be inserted into tree without affecting
the fill factor, balance and order.
00:00/07:31.6M.2K
Features of Java -

The 3rd leaf node has the values (50, 55, 60, 65, 70) and its current root node is 50. We will split
the leaf node of the tree in the middle so that its balance is not altered. So we can group (50, 55)
and (60, 65, 70) into 2 leaf nodes.
If these two has to be leaf nodes, the intermediate node cannot branch from 50. It should have
60 added to it, and then we can have pointers to a new leaf node.

This is how we can insert an entry when there is overflow. In a normal scenario, it is very easy to
find the node where it fits and then place it in that leaf node.

B+ Tree Deletion
Suppose we want to delete 60 from the above example. In this case, we have to remove 60 from
the intermediate node as well as from the 4th leaf node too. If we remove it from the
intermediate node, then the tree will not satisfy the rule of the B+ tree. So we need to modify it
to have a balanced tree.
After deleting node 60 from above B+ tree and re-arranging the nodes, it will show as follows:

Hashing
In a huge database structure, it is very inefficient to search all the index values and reach the
desired data. Hashing technique is used to calculate the direct location of a data record on the
disk without using index structure.
In this technique, data is stored at the data blocks whose address is generated by using the
hashing function. The memory location where these records are stored is known as data bucket
or data blocks.
In this, a hash function can choose any of the column value to generate the address. Most of the
time, the hash function uses the primary key to generate the address of the data block. A hash
function is a simple mathematical function to any complex mathematical function. We can even
consider the primary key itself as the address of the data block. That means each row whose
address will be the same as a primary key stored in the data block.

The above diagram shows data block addresses same as primary key value. This hash function
can also be a simple mathematical function like exponential, mod, cos, sin, etc. Suppose we have
mod (5) hash function to determine the address of the data block. In this case, it applies mod (5)
hash function on the primary keys and generates 3, 3, 1, 4 and 2 respectively, and records are
stored in those data block addresses.

Types of Hashing:

o Static Hashing

o Dynamic Hashing

Static Hashing
In static hashing, the resultant data bucket address will always be the same. That means if we
generate an address for EMP_ID =103 using the hash function mod (5) then it will always result
in same bucket address 3. Here, there will be no change in the bucket address.
Hence in this static hashing, the number of data buckets in memory remains constant
throughout. In this example, we will have five data buckets in the memory used to store the data.

https://www.javatpoint.com/dbms-static-hashing
https://www.javatpoint.com/dbms-dynamic-hashing

Operations of Static Hashing

o Searching a record
When a record needs to be searched, then the same hash function retrieves the address of the
bucket where the data is stored.

o Insert a Record
When a new record is inserted into the table, then we will generate an address for a new record
based on the hash key and record is stored in that location.

o Delete a Record
To delete a record, we will first fetch the record which is supposed to be deleted. Then we will
delete the records for that address in memory.

o Update a Record
To update a record, we will first search it using a hash function, and then the data record is
updated.
If we want to insert some new record into the file but the address of a data bucket generated by
the hash function is not empty, or data already exists in that address. This situation in the static
hashing is known as bucket overflow. This is a critical situation in this method.
To overcome this situation, there are various methods. Some commonly used methods are as
follows:

1. Open Hashing
When a hash function generates an address at which data is already stored, then the next bucket
will be allocated to it. This mechanism is called as Linear Probing.
For example: suppose R3 is a new address which needs to be inserted, the hash function
generates address as 112 for R3. But the generated address is already full. So the system searches
next available data bucket, 113 and assigns R3 to it.

2. Close Hashing
When buckets are full, then a new data bucket is allocated for the same hash result and is linked
after the previous one. This mechanism is known as Overflow chaining.
For example: Suppose R3 is a new address which needs to be inserted into the table, the hash
function generates address as 110 for it. But this bucket is full to store the new data. In this case,
a new bucket is inserted at the end of 110 buckets and is linked to it.

Dynamic Hashing

o The dynamic hashing method is used to overcome the problems of static hashing like

bucket overflow.

o In this method, data buckets grow or shrink as the records increases or decreases. This

method is also known as Extendable hashing method.

o This method makes hashing dynamic, i.e., it allows insertion or deletion without resulting

in poor performance.

How to search a key

o First, calculate the hash address of the key.

o Check how many bits are used in the directory, and these bits are called as i.

o Take the least significant i bits of the hash address. This gives an index of the directory.

o Now using the index, go to the directory and find bucket address where the record might

be.

How to insert a new record

o Firstly, you have to follow the same procedure for retrieval, ending up in some bucket.

o If there is still space in that bucket, then place the record in it.

o If the bucket is full, then we will split the bucket and redistribute the records.

For example:
Consider the following grouping of keys into buckets, depending on the prefix of their hash
address:

The last two bits of 2 and 4 are 00. So it will go into bucket B0. The last two bits of 5 and 6 are 01,
so it will go into bucket B1. The last two bits of 1 and 3 are 10, so it will go into bucket B2. The
last two bits of 7 are 11, so it will go into B3.

Insert key 9 with hash address 10001 into the above structure:

o Since key 9 has hash address 10001, it must go into the first bucket. But bucket B1 is full,

so it will get split.

o The splitting will separate 5, 9 from 6 since last three bits of 5, 9 are 001, so it will go into

bucket B1, and the last three bits of 6 are 101, so it will go into bucket B5.

o Keys 2 and 4 are still in B0. The record in B0 pointed by the 000 and 100 entry because

last two bits of both the entry are 00.

o Keys 1 and 3 are still in B2. The record in B2 pointed by the 010 and 110 entry because

last two bits of both the entry are 10.

o Key 7 are still in B3. The record in B3 pointed by the 111 and 011 entry because last two

bits of both the entry are 11.

Advantages of dynamic hashing

o In this method, the performance does not decrease as the data grows in the system. It

simply increases the size of memory to accommodate the data.

o In this method, memory is well utilized as it grows and shrinks with the data. There will

not be any unused memory lying.

o This method is good for the dynamic database where data grows and shrinks frequently.

Disadvantages of dynamic hashing

o In this method, if the data size increases then the bucket size is also increased. These

addresses of data will be maintained in the bucket address table. This is because the data

address will keep changing as buckets grow and shrink. If there is a huge increase in data,

maintaining the bucket address table becomes tedious.

o In this case, the bucket overflow situation will also occur. But it might take little time to

reach this situation than static hashing.

Crash Recovery

DBMS is a highly complex system with hundreds of transactions being executed every second.
The durability and robustness of a DBMS depends on its complex architecture and its underlying
hardware and system software. If it fails or crashes amid transactions, it is expected that the
system would follow some sort of algorithm or techniques to recover lost data.

Failure Classification

To see where the problem has occurred, we generalize a failure into various categories, as follows
−

Transaction failure

A transaction has to abort when it fails to execute or when it reaches a point from where it can’t
go any further. This is called transaction failure where only a few transactions or processes are
hurt.

Reasons for a transaction failure could be −

 Logical errors − Where a transaction cannot complete because it has some code error or
any internal error condition.

 System errors − Where the database system itself terminates an active transaction
because the DBMS is not able to execute it, or it has to stop because of some system
condition. For example, in case of deadlock or resource unavailability, the system aborts
an active transaction.

System Crash

There are problems − external to the system − that may cause the system to stop abruptly and
cause the system to crash. For example, interruptions in power supply may cause the failure of
underlying hardware or software failure.

Examples may include operating system errors.

Disk Failure

In early days of technology evolution, it was a common problem where hard-disk drives or
storage drives used to fail frequently.

Disk failures include formation of bad sectors, unreachability to the disk, disk head crash or any
other failure, which destroys all or a part of disk storage.

Storage Structure

We have already described the storage system. In brief, the storage structure can be divided into
two categories −

 Volatile storage − As the name suggests, a volatile storage cannot survive system crashes.
Volatile storage devices are placed very close to the CPU; normally they are embedded
onto the chipset itself. For example, main memory and cache memory are examples of
volatile storage. They are fast but can store only a small amount of information.

 Non-volatile storage − These memories are made to survive system crashes. They are
huge in data storage capacity, but slower in accessibility. Examples may include hard-disks,
magnetic tapes, flash memory, and non-volatile (battery backed up) RAM.

Recovery and Atomicity

When a system crashes, it may have several transactions being executed and various files opened
for them to modify the data items. Transactions are made of various operations, which are atomic
in nature. But according to ACID properties of DBMS, atomicity of transactions as a whole must
be maintained, that is, either all the operations are executed or none.

When a DBMS recovers from a crash, it should maintain the following −

 It should check the states of all the transactions, which were being executed.
 A transaction may be in the middle of some operation; the DBMS must ensure the

atomicity of the transaction in this case.
 It should check whether the transaction can be completed now or it needs to be rolled

back.
 No transactions would be allowed to leave the DBMS in an inconsistent state.

There are two types of techniques, which can help a DBMS in recovering as well as maintaining
the atomicity of a transaction −

 Maintaining the logs of each transaction, and writing them onto some stable storage
before actually modifying the database.

 Maintaining shadow paging, where the changes are done on a volatile memory, and later,
the actual database is updated.

Log-based Recovery

Log is a sequence of records, which maintains the records of actions performed by a transaction.
It is important that the logs are written prior to the actual modification and stored on a stable
storage media, which is failsafe.

Log-based recovery works as follows −

 The log file is kept on a stable storage media.
 When a transaction enters the system and starts execution, it writes a log about it.

<Tn, Start>
 When the transaction modifies an item X, it write logs as follows −

<Tn, X, V1, V2>

It reads Tn has changed the value of X, from V1 to V2.

 When the transaction finishes, it logs −
<Tn, commit>

The database can be modified using two approaches −

 Deferred database modification − All logs are written on to the stable storage and the
database is updated when a transaction commits.

 Immediate database modification − Each log follows an actual database modification.
That is, the database is modified immediately after every operation.

Recovery with Concurrent Transactions

When more than one transaction are being executed in parallel, the logs are interleaved. At the
time of recovery, it would become hard for the recovery system to backtrack all logs, and then
start recovering. To ease this situation, most modern DBMS use the concept of 'checkpoints'.

Checkpoint

Keeping and maintaining logs in real time and in real environment may fill out all the memory
space available in the system. As time passes, the log file may grow too big to be handled at all.
Checkpoint is a mechanism where all the previous logs are removed from the system and stored
permanently in a storage disk. Checkpoint declares a point before which the DBMS was in
consistent state, and all the transactions were committed.

Recovery

When a system with concurrent transactions crashes and recovers, it behaves in the following
manner −

 The recovery system reads the logs backwards from the end to the last checkpoint.
 It maintains two lists, an undo-list and a redo-list.
 If the recovery system sees a log with <Tn, Start> and <Tn, Commit> or just <Tn, Commit>,

it puts the transaction in the redo-list.
 If the recovery system sees a log with <Tn, Start> but no commit or abort log found, it puts

the transaction in undo-list.

All the transactions in the undo-list are then undone and their logs are removed. All the
transactions in the redo-list and their previous logs are removed and then redone before saving
their logs.

Deadlock in DBMS

A deadlock is a condition where two or more transactions are waiting indefinitely for one another
to give up locks. Deadlock is said to be one of the most feared complications in DBMS as no task
ever gets finished and is in waiting state forever.

For example: In the student table, transaction T1 holds a lock on some rows and needs to update
some rows in the grade table. Simultaneously, transaction T2 holds locks on some rows in the
grade table and needs to update the rows in the Student table held by Transaction T1.

Now, the main problem arises. Now Transaction T1 is waiting for T2 to release its lock and
similarly, transaction T2 is waiting for T1 to release its lock. All activities come to a halt state and
remain at a standstill. It will remain in a standstill until the DBMS detects the deadlock and aborts
one of the transactions.

Deadlock Avoidance

o When a database is stuck in a deadlock state, then it is better to avoid the database rather

than aborting or restating the database. This is a waste of time and resource.

o Deadlock avoidance mechanism is used to detect any deadlock situation in advance. A

method like "wait for graph" is used for detecting the deadlock situation but this method

is suitable only for the smaller database. For the larger database, deadlock prevention

method can be used.

