
Java Notes

Introduction----It is one of the programming language or technology used for developing web

applications. Using this technology you can develop distributed application. A Java language
developed at SUN Micro Systems in the year 1995 under the guidance of James Gosling and their
team. In other word It is a programming language suitable for the development of web applications.
It is also used for developing desktop and mobile application. This language was developed at SUN
Microsystems in the year 1995 under the guidance of James Gosling and their team.

Overview of Java

Java is one of the programming language or technology used for developing web applications. Java
language developed at SUN Micro Systems in the year 1995 under the guidance of James Gosling
and there team. Originally SUN Micro Systems is one of the Academic university (Standford
University Network)

Whatever the software developed in the year 1990, SUN Micro Systems has released on the name
of oak, which is original name of java (scientifically oak is one of the tree name). The OAK has
taken 18 months to develop.

The oak is unable to fulfill all requirements of the industry. So James Gosling again reviews this
oak and released with the name of java in the year 1995. Scientifically java is one of the coffee seed
name.

Java divided into three categories, they are

 J2SE (Java 2 Standard Edition)

 J2EE (Java 2 Enterprise Edition)

 J2ME (Java 2 Micro or Mobile Edition)

J2SE

J2SE is used for developing client side applications.

J2EE

J2EE is used for developing server side applications.

J2ME

J2ME is used for developing mobile or wireless application by making use of a predefined protocol
called WAP(wireless Access / Application protocol).

All versions of java

Java Version SE 7

J2SE 1.2 is called as Dolphin and it is released on 28 July, 2011.

Java Version SE 6

J2SE 1.2 is called as Mustang and it is released on 11 December, 2006.

 J2SE Version 5.0

J2SE 1.2 is called as Tiger and it is released on 30 September, 2004.

J2SE Version 1.4

J2SE 1.2 is called as Merlin and it is released on 6 February, 2002.

J2SE Version 1.3

J2SE 1.2 is called as Kestrel and it is released on 8 May, 2000.

 J2SE Version 1.2

J2SE 1.2 is called as playground and it is released on 8 December, 1998.

JDK Version 1.1

JDK 1.1 is released on 19 januray, 1997

JDK Version 1.0

JDK 1.0 is called as OAK, and it is released on 23 januray, 1996.

Basic Points of Java

Java is a platform independent, more powerful, secure, high performance, multithreaded
programming language. Here we discuss some points related to Java.

Define byte

Byte code is the set of optimized instructions generated during compilation phase and it is more
powerful than ordinary pointer code.

Define JRE

The Java Runtime Environment (JRE) is part of the Java Development Kit (JDK). It contains a
set of libraries and tools for developing Java application. The Java Runtime Environment provides
the minimum requirements for executing a Java application.

Define JVM

JVM is set of programs developed by sun Micro System and supplied as a part of the JDK for
reading line by line line of byte code and it converts into a native understanding form of operating
system. The Java language is one of the compiled and interpreted programming language.

Garbage Collector

The Garbage Collector is the system Java program which runs in the background along with a
regular Java program to collect un-Referenced (unused) memory space for improving the
performance of our applications.

Note: Java programming does not support destructor concept in place of destructor, we have
garbage collector program.

Define an API

An API (Application Programming Interface) is a collection of packages, a package is the
collection of classes, interfaces and sub-packages. A sub-package is a collection of classes,
Interfaces and sub sub packages etc.

Java programming contains user friendly syntax so that we can develop effective applications. in
other words if any language is providing user friendly syntax, we can develop error free

applications.

Definition of JIT

JIT (Just In Time compiler)is the set of programs developed by SUN Micro System and added as a
part of JVM, to speed up the interpretation phase.

Network based application

Network based application are mainly classified into two types.

 Centralized Applications

 Distributed Applications

Centralized applications

In this scenario multiple client system depends on single server system.

The major drawback in this architecture is if any problem occurred on server system that will be
reflected on every client system.

Distributed applications

In this scenario multiple client system are depends on multiple server system so that even problem
occurred in one server will never be reflected on any client system.

Note: In this architecture same application is distributed in multiple server system.

Java is a very powerful language can be used to developed both client server architecture and
distributed architecture based application.

OOP's Concept(principles) in Java

Object-Oriented Programming is a methodology or paradigm to design a program using classes
and objects.

 Object

 Class

 Inheritance

 Polymorphism

 Abstraction

 Encapsulation

Object--Object is the physical as well as logical entity where as class is the only logical entity.

Class--Class is a blue print which is containing only list of variables and method and no
memory is allocated for them. A class is a group of objects that has common properties.

Encapsulation--is a process of wrapping of data and methods in a single unit is called
encapsulation. Encapsulation is achieved in C++ language by class concept. The main advantage of
using of encapsulation is to secure the data from other methods, when we make a data private then
these data only use within the class, but these data not accessible outside the class.

Abstraction---is the concept of exposing only the required essential characteristics and behavior
with respect to a context.

Hiding of data is known as data abstraction. In object oriented programming language this is
implemented automatically while writing the code in the form of class and object.

Inheritance--- The process of obtaining the data members and methods from one class to another
class is known as inheritance. It is one of the fundamental features of object-oriented programming.

Polymorphism --The process of representing one Form in multiple forms is known as
Polymorphism. Here one form represent original form or original method always resides in base
class and multiple forms represents overridden method which resides in derived classes.

Features of Java

Features of a language are nothing but the set of services or facilities provided by the language
vendors to the industry programmers. Some important features of java are;

 Important Features of Java

 Simple

 Platform Independent

 Architectural Neutral

 Portable

 Multi Threading

 Distributed

 Networked

 Robust

 Dynamic

 Secured

 High Performance

 Interpreted

 Object Oriented

1. Simple

It is simple because of the following factors:

 It is free from pointer due to this execution time of application is improved. [Whenever we

write a Java program without pointers then internally it is converted into the equivalent
pointer program].

 It has Rich set of API (application protocol interface).

 It hs Garbage Collector which is always used to collect un-Referenced (unused) Memory

location for improving performance of a Java program.

 It contains user friendly syntax for developing any applications.

2. Platform Independent

A program or technology is said to be platform independent if and only if which can run on all
available operating systems with respect to its development and compilation. (Platform represents
O.S).

3. Architectural Neutral

Architecture represents processor.

A Language or Technology is said to be Architectural neutral which can run on any available
processors in the real world without considering their development and compilation.

The languages like C, CPP are treated as architectural dependent.

4. Portable

If any language supports platform independent and architectural neutral feature known as portable.

The languages like C, CPP, Pascal are treated as non-portable language. It is a portable language.
According to SUN microsystem.

5. Multithreaded

A flow of control is known as a threa. When any Language executes multiple thread at a time that
language is known as multithreaded e. It is multithreaded.

6. Distributed

Using this language we can create distributed applications. RMI and EJB are used for creating
distributed applications. In distributed application multiple client system depends on multiple server
systems so that even problem occurred in one server will never be reflected on any client system.

Note: In this architecture same application is distributed in multiple server system.

7. Networked

It is mainly designed for web based applications, J2EE is used for developing network based
applications.

8. Robust

Simply means of Robust are strong. It is robust or strong Programming Language because of its
capability to handle Run-time Error, automatic garbage collection, the lack of pointer concept,

Exception Handling. All these points make It robust Language.

9. Dynamic

It supports Dynamic memory allocation due to this memory wastage is reduce and improve
performance of the application. The process of allocating the memory space to the input of the
program at a run-time is known as dynamic memory allocation, To programming to allocate
memory space by dynamically we use an operator called 'new' 'new' operator is known as dynamic
memory allocation operator.

10. Secure

It is a more secure language compared to other language; In this language, all code is covered in
byte code after compilation which is not readable by human.

11. High performance

It have high performance because of following reasons;

 This language uses Bytecode which is faster than ordinary pointer code so Performance of

this language is high.

 Garbage collector, collect the unused memory space and improve the performance of the

application.

 It has no pointers so that using this language we can develop an application very easily.

 It support multithreading, because of this time consuming process can be reduced to

executing the program.

12. Interpreted

It is one of the highly interpreted programming languages.

13. Object Oriented

It supports OOP's concepts because of this it is most secure language, for this topic you can read our
oop's concepts in detail.

First Java Program

Requirements for java Program

For executing any java program we need given things.

 Install the JDK any version if you don't have installed it.

 Set path of the jdk/bin directory.

 Create the java program

 Compile and run the java program

Steps For compiling and executing the java program

Java is very simple programming language first we write a java program and save it with program
class name.

In below program we create a java program with "First" name so we save this program with
"First.java" file name. We can save our java program anywhere in our system or computer.

Create First program

Example

class First
{
public static void main(String[] args)
{
System.out.println("Hello Java");
System.out.println("My First Java Program");
}
}

Compile and Execute Java Code

To compile: javac First.java
To execute: java First

Output

Hello Java
My First Java Program

Save Java Program

Syntax:
 Filename.java
Example:
 First.java

Compile Java Program

Syntax:
 Javac Filename.java
Example:
 Javac First.java

Note: Here Javac and Java are called tools or application programs or exe files developed by sun
micro system and supply as a part of jdk 1.5/1.6/1.7 in bin folder. Javac is used for compile the java
program and java is used for run the java program.

During the program execution internally following steps will be occurs.

 Class loader subsystem loads or transfer the specified class into main memory(RAM) from

secondary memory(hard disk)

 JVM takes the loaded class

 JVM looks for main method because each and every java program start executing from

main() method.

 Since main() method of java is static in nature, JVM call the main() method with respect to

loaded class (Example: First as First.main(--))

Note: A java program can contain any number of main method but JVM start execution from that
main() method which is taking array of object of String class.

Compile and Run Java Program

In the Java programming language, all source code is first written in plain text files and save with
the .java extension. After compilation, .class files are generated by javac compiler. A .class file
does not contain code that is native to your processor; it instead contains bytecodes (it is machine
language of the Java Virtual Machine1 (JVM)).

The java launcher tool then runs your application with an instance of the Java Virtual Machine
(JVM).

Steps For compile Java Program

 First Save Java program with same as class name with .java extension.

Example: Sum.java

 Compile: javac Filename.java

Example, javac Sum.java

Note: Here javac is tools or application programs or exe files which is used for Compile the Java
program.

Steps For Run Java Program

 For run java program use java tool.

 Run by: java Filename

Example: java sum

Note: Here java is tools or application programs or exe files which is used for run the Java program.

Steps For compiling and executing the java program

The following sequence of steps represented in the diagram use compiling the java program and
executing the java programs.

In the above diagram javac and java are called tools or application programs or exe files developed
by sun micro system and supply as a part of jdk 1.5/1.6/1.7 in bin folder (starting directory of java is
called java home directory).

Difference between JDK, JVM and JRE

Jvm, Jre, Jdk these all the backbone of java language. Each components have separate works. Jdk
and Jre physically exists but Jvm are abstract machine it means it not physically exists.

JVM

JVM (Java Virtual Machine) is a software. It is a specification that provides runtime environment in
which java bytecode can be executed. It not physically exists.

JVMs are not same for all hardware and software, for example for window os JVM is different and
for Linux VJM is different. JVM, JRE and JDK are platform dependent because configuration of
each OS differs. But, Java is platform independent.

JRE

The Java Runtime Environment (JRE) is part of the Java Development Kit (JDK). It contains set of
libraries and tools for developing java application. The Java Runtime Environment provides the

minimum requirements for executing a Java application. It physically exists. It contains set of
libraries + other files that JVM uses at runtime.

JDK

The Java Development Kit (JDK) is primary components. It physically exists. It is collection of
programming tools and JRE, JVM.

JVM Architecture in Java

JVM (Java Virtual Machine) is a software. It is a specification that provides Runtime
environment in which java bytecode can be executed.

Operation of JVM

JVM mainly performs following operations.

 Allocating sufficient memory space for the class properties.

 Provides runtime environment in which java bytecode can be executed

 Converting byte code instruction into machine level instruction.

JVM is separately available for every Operating System while installing java software so that JVM
is platform dependent.

Note: Java is platform Independent but JVM is platform dependent because every Operating system
have different-different JVM which is install along with JDK Software.

Class loader subsystem:

Class loader subsystem will load the .class file into java stack and later sufficient memory will be
allocated for all the properties of the java program into following five memory locations.

 Heap area

 Method area

 Java stack

 PC register

 Native stack

Heap area:

In which object references will be stored.

Method area

In which static variables non-static and static method will be stored.

Java Stack

In which all the non-static variable of class will be stored and whose address referred by object
reference.

Pc Register

Which holds the address of next executable instruction that means that use the priority for the
method in the execution process?

Native Stack

Native stack holds the instruction of native code (other than java code) native stack depends on
native library. Native interface will access interface between native stack and native library.

Execution Engine

Which contains Interpreter and JIT compiler whenever any java program is executing at the first
time interpreter will comes into picture and it converts one by one byte code instruction into
machine level instruction JIT compiler (just in time compiler) will comes into picture from the
second time onward if the same java program is executing and it gives the machine level instruction
to the process which are available in the buffer memory.

Note: The main aim of JIT compiler is to speed up the execution of java program.

What is JIT and Why use JIT

JIT is the set of programs developed by SUN Micro System and added as a part of JVM, to speed
up the interpretation phase.

In the older version of java compilation phase is so faster than interpretation phase. Industry has
complained to the SUN Micro System saying that compilation phase is very faster and
interpretation phase is very slow.

So solve this issue, SUN Micro System has developed a program called JIT (just in time compiler)
and added as a part of JVM to speed up the interpretation phase. In the current version of java
interpretation phase is so faster than compilation phase. Hence java is one of the highly interpreted
programming languages.

Object and class in Java

Object is the physical as well as logical entity where as class is the only logical entity.

Class: Class is a blue print which is containing only list of variables and method and no memory is
allocated for them. A class is a group of objects that has common properties.

A class in java contains:

 Data Member

 Method

 Constructor

 Block

 Class and Interface

Object: Object is a instance of class, object has state and behaviors.

An Object in java has three characteristics:

 State

 Behavior

 Identity

State: Represents data (value) of an object.

Behavior: Represents the behavior (functionality) of an object such as deposit, withdraw etc.

Identity: Object identity is typically implemented via a unique ID. The value of the ID is not
visible to the external user. But,it is used internally by the JVM to identify each object uniquely.

Class is also can be used to achieve user defined data types.

Real life example of object and class

In real world many examples of object and class like dog, cat, and cow are belong to animal's class.
Each object has state and behaviors. For example a dog has state:- color, name, height, age as well
as behaviors:- barking, eating, and sleeping.

Vehicle class-- Car, bike, truck these all are belongs to vehicle class. These Objects have also

different different states and behaviors. For Example car has state - color, name, model, speed,
Mileage. as we;; as behaviors - distance travel

Difference between Class and Object in Java

Class Object

1
Class is a container which collection

of variables and methods.
object is a instance of class

2
No memory is allocated at the time

of declaration

Sufficient memory space will be allocated
for all the variables of class at the time of

declaration.

3
One class definition should exist

only once in the program.
For one class multiple objects can be created.

Syntax to declare a Class

 class Class_Name
 {
 data member;
 method;
 }

Simple Example of Object and Class

In this example, we have created a Employee class that have two data members eid and ename. We
are creating the object of the Employee class by new keyword and printing the objects value.

Example

class Employee
{
 int eid; // data member (or instance variable)
 String ename; // data member (or instance variable)

 eid=101;
 ename="Hitesh";
 public static void main(String args[])
 {
 Employee e=new Employee(); // Creating an object of class Employee
 System.out.println("Employee ID: "+e.eid);
 System.out.println("Name: "+e.ename);
 }
}

Output

Employee ID: 101
Name: Hitesh

Note: A new keyword is used to allocate memory at runtime, new keyword is used for create an
object of class, later we discuss all the way for create an object of class.

Data Type in Java

Datatype is a spacial keyword used to allocate sufficient memory space for the data, in other words
Data type is used for representing the data in main memory (RAM) of the computer.

In general every programming language is containing three categories of data types. They are

 Fundamental or primitive data types

 Derived data types

 User defined data types.

Primitive data types

Primitive data types are those whose variables allows us to store only one value but they never
allows us to store multiple values of same type. This is a data type whose variable can hold
maximum one value at a time.

Example

int a; // valid
a=10; // valid
a=10, 20, 30; // invalid

Here "a" store only one value at a time because it is primitive type variable.

Derived data types

Derived data types are those whose variables allow us to store multiple values of same type. But
they never allows to store multiple values of different types. These are the data type whose variable
can hold more than one value of similar type. In general derived data type can be achieve using
array.

Example

int a[] = {10,20,30}; // valid
int b[] = {100, 'A', "ABC"}; // invalid

Here derived data type store only same type of data at a time not store integer, character and string
at same time.

User defined data types

User defined data types are those which are developed by programmers by making use of
appropriate features of the language.

User defined data types related variables allows us to store multiple values either of same type or
different type or both. This is a data type whose variable can hold more than one value of dissimilar
type, in java it is achieved using class concept.

Note: In java both derived and user defined data type combined name as reference data type.

In C language, user defined data types can be developed by using struct, union, enum etc. In java
programming user defined datatype can be developed by using the features of classes and
interfaces.

Example

Student s = new Student();

In java we have eight data type which are organized in four groups. They are

 Integer category data types

 Character category data types

 Float category data types

 Boolean category data types

Integer category data types

These category data types are used for storing integer data in the main memory of computer by
allocating sufficient amount of memory space.

Integer category data types are divided into four types which are given in following table

Data Type Size Range
1 Byte 1 + 127 to -128
2 Short 2 + 32767 to -32768
3 Int 4 + x to - (x+1)
4 Long 8 + y to - (y+1)

Character category data types

A character is an identifier which is enclosed within single quotes. In java to represent character
data, we use a data type called char. This data type takes two byte since it follows Unicode character
set.

Data Type Size(Byte) Range

Char 2
232767 to
-32768

Why Java take 2 byte of memory for store character ?

Java support more than 18 international languages so java take 2 byte for characters, because for 18
international language 1 byte of memory is not sufficient for storing all characters and symbols
present in 18 languages. Java supports Unicode but c support ascii code. In ascii code only English
language are present, so for storing all English latter and symbols 1 byte is sufficient. Unicode
character set is one which contains all the characters which are available in 18 international
languages and it contains 65536 characters

Float category data types

Float category data type are used for representing float values. This category contains two data
types, they are in the given table

Data
Type

Size Range
Number of

decimal
places

Float 4
+2147483647 to
-2147483648

8

Double 8 + 9.223*1018 16

Boolean category data types

Boolean category data type is used for representing or storing logical values is true or false. In java
programming to represent Boolean values or logical values, we use a data type called Boolean.

Why Boolean data types take zero byte of memory ?

Boolean data type takes zero bytes of main memory space because Boolean data type of java
implemented by Sun Micro System with a concept of flip - flop. A flip - flop is a general purpose
register which stores one bit of information (one true and zero false).

Note: In C, C++ (Turbo) Boolean data type is not available for representing true false values but a
true value can be treated as non-zero value and false values can be represented by zero

Data Type Default Value Default size
boolean false 1 bit
char '\u0000' 2 byte
byte 0 1 byte

short 0 2 byte
int 0 4 byte
long 0L 8 byte
float 0.0f 4 byte
double 0.0d 8 byte

Variable Declaration Rules in Java

Variable is an identifier which holds data or another one variable is an identifier whose value can
be changed at the execution time of program. Variable is an identifier which can be used to identify
input data in a program.

Syntax

Variable_name = value;

Rules to declare a Variable

 Every variable name should start with either alphabets or underscore (_) or dollar ($)

symbol.

 No space are allowed in the variable declarations.

 Except underscore (_) no special symbol are allowed in the middle of variable declaration

 Variable name always should exist in the left hand side of assignment operators.

 Maximum length of variable is 64 characters.

 No keywords should access variable name.

Note: Actually a variable also can start with ¥,¢, or any other currency sign.

Example of Variable Declaration

class Sum
{
 public static void main(String[] args)
 {
 int _a, ¢b, ¥c, $d, result;
 _a=10;
 ¢b=20;
 ¥c=30;
 $d=40;

 result=_a+¢b+¥c+$d;
 System.out.println("Sum is :" +result);
 }
}

Output

Sum is : 100

Variable declarations

In which sufficient memory will be allocated and holds default values.

Syntax

Datatype variable_name;
byte b1;

Variable initialization

It is the process of storing user defined values at the time of allocation of memory space.

Variable assignment

Value is assigned to a variable if that is already declared or initialized.

Syntax

 Variable_Name = value
 int a = 100;

Syntax

int a= 100;
int b;
b = 25; // ------> direct assigned variable
b = a; // ------> assigned value in term of variable
b = a+15; // ------> assigned value as term of expression

Operators in Java

Operator is a special symbol that tells the compiler to perform specific mathematical or logical
Operation. Java supports following lists of operators.

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Bitwise Operators

 Assignment Operators

 Ternary or Conditional Operators

Arithmetic Operators

Given table shows all the Arithmetic operator supported by Java Language. Lets suppose variable A
hold 8 and B hold 3.

Operator Example (int A=8, B=3) Result
+ A+B 11
- A-B 5
* A*B 24
/ A/B 2
% A%4 0

Relational Operators

Which can be used to check the Condition, it always return true or false. Lets suppose variable A
hold 8 and B hold 3.

Operators Example (int A=8, B=3) Result
< A<B False
<= A<=10 True
> A>B True
>= A<=B False
== A== B False

!= A!=(-4) True

Logical Operator

Which can be used to combine more than one Condition?. Suppose you want to combined two
conditions A<B and B>C, then you need to use Logical Operator like (A<B) && (B>C). Here
&& is Logical Operator.

Operator Example (int A=8, B=3, C=-10) Result
&& (A<B) && (B>C) False
|| (B!=-C) || (A==B) True
! !(B<=-A) True

Truth table of Logical Operator

C1 C2 C1 && C2 C1 || C2 !C1 !C2
T T T T F F
T F F T F T
F T F T T F
F F F F T T

Assignment operators

Which can be used to assign a value to a variable. Lets suppose variable A hold 8 and B hold 3.

Operator Example (int A=8, B=3) Result
+= A+=B or A=A+B 11
-= A-=3 or A=A+3 5
= A=7 or A=A*7 56
/= A/=B or A=A/B 2
%= A%=5 or A=A%5 3
=a=b Value of b will be assigned to a

Ternary operator

If any operator is used on three operands or variable is known as ternary operator. It can be
represented with " ?: "

Structure of Java Program

Structure of a java program is the standard format released by Language developer to the Industry
programmer.

Sun Micro System has prescribed the following structure for the java programmers for developing
java application.

 A package is a collection of classes, interfaces and sub-packages. A sub package contains

collection of classes, interfaces and sub-sub packages etc. java.lang.*; package is imported
by default and this package is known as default package.

 Class is keyword used for developing user defined data type and every java program must

start with a concept of class.

 "ClassName" represent a java valid variable name treated as a name of the class each and

every class name in java is treated as user-defined data type.

 Data member represents either instance or static they will be selected based on the name of

the class.

 User-defined methods represents either instance or static they are meant for performing the

operations either once or each and every time.

 Each and every java program starts execution from the main() method. And hence main()

method is known as program driver.

 Since main() method of java is not returning any value and hence its return type must be

void.

 Since main() method of java executes only once throughout the java program execution and

hence its nature must be static.

 Since main() method must be accessed by every java programmer and hence whose access

specifier must be public.

 Each and every main() method of java must take array of objects of String.

 Block of statements represents set of executable statements which are in term calling user-

defined methods are containing business-logic.

 The file naming conversion in the java programming is that which-ever class is containing

main() method, that class name must be given as a file name with an extension .java.

Main() Method in Java

main() method is starting execution block of a java program or any java program start their
execution from main method. If any class contain main() method known as main class.

Syntax of main() method:

Syntax

public static void main(String args[])

{
.......
.......
}

Public

public is a keyword in a java language whenever if it is preceded by main() method the scope is
available anywhere in the java environment that means main() method can be executed from
anywhere. main() method must be accessed by every java programmer and hence whose access
specifier must be public.

Static

static is a keyword in java if it is preceded by any class properties for that memory is allocated only
once in the program. Static method are executed only once in the program. main() method of java
executes only once throughout the java program execution and hence it declare must be static.

Void

void is a special datatype also known as no return type, whenever it is preceded by main() method
that will be never return any value to the operating system. main() method of java is not returning
any value and hence its return type must be void.

String args[]

String args[] is a String array used to hold command line arguments in the form of String values.

In case of main() method following changes are acceptable

1. We can declare String[] in any valid form.

 String[] args

 String args[]

 String []args

2. Instance of String[] we can take var-arg String parameter is String...

Syntax

main(String[] args) --> main(String... args)

3. We can change the order of modifiers i.e Instead of

Syntax

public static we can take static public

4. Instead of args we can take any valid java identifier.

Syntax

public static void main(String a[])

We can overload main() method ?

Yes, We can overload main() method. A Java class can have any number of main() methods. But run
the java program, which class should have main() method with signature as "public static void
main(String[] args). If you do any modification to this signature, compilation will be successful.
But, not run the java program. we will get the run time error as main method not found.

Example of override main() method

Example

public class mainclass
{
public static void main(String[] args)
{
System.out.println("Execution starts from Main()");
}
void main(int args)
{
System.out.println("Override main()");
}
double main(int i, double d)
{
System.out.println("Override main()");
return d;
}
}

Output

Execution starts from Main()

Command Line Arguments in Java

If any input value is passed through the command prompt at the time of running of the program is
known as command line argument by default every command line argument will be treated as
string value and those are stored in a string array of main() method.

Syntax for Compile and Run CMD programs

Compile By -> Javac Mainclass.java
Run By -> Java Mainclass value1 value2 value3

Program Command Line Argument in Java

class CommandLineExample
{
public static void main(String args[])
{
System.out.println("Argument is: "+args[0]);
}
}

Compile and Run above programs

Compile By > Javac CommandLineExample.java
Run By > Java CommandLineExample Porter

Output

Argument is: Porter

Example of command-line argument in java

class SumDemo
{
public static void main(String args[])
{
System.out.println("Sum: "+args[0]);
}
}

Compile and Run above programs

Compile By > Javac SumDemo.java
Run By > Java SumDemo 10 20

Output

Sum: 30

When the above statement is executing the following sequence of steps will take place.

 Class loader sub-system loads SumDemo along with Command line argument(10, 20) and in

main memory.

 JVM takes the loaded class SumDemo along with Command line arguments (10, 20) and

place the number of values in the length variable that is 2.

 JVM looks for main() that is JVM will place the Command in the main() in the form of

string class that is.

 Hence all the CMD line arguments of Java are sending to main() method available in the

form of an array of object of String class (every CMD are available or stored in main
method in the form of an array of object of String class).

 JVM calls the main() method with respect to load class SumDemo that is SumDemo.main().

Accept command line arguments and display their values

class CMD
{
public static void main(String k[])
{
System.out.println("no. of arguments ="+k.length);
for(int i=0;i< k.length;i++)
{
System.out.println(k[i]);
}
}
}

Note: Except + operator any numeric operation not allowed in command line arguments.

Square of Number by reading value from command prompt.

class squareDemo
{
int no, result;
void square(String s)
{
int no=Integer.parseInt(s);
result=no*no;
System.out.println("Square: " +result);
}
}
class CMD
{
public static void main(String args[])
{
System.out.println("no of arguments: "+args.length);

squareDemo obj=new squareDemo();
obj.square(args[0]);
}
}

System.out.println() in Java

In java language print() and println() are the predefined non-static method of printStream class
used to display value or message either in the same line or line by line respectively. PrintStream
class is having fixed object reference in the System class (existing as a static properties) so that
either print() or println() method can be called with following syntax..

Syntax

 System.out.print("--------------");
 System.out.println("------------");

/* "out" is Object reference of printStream class
 existing in system class as a static property. */

Example

class PrintStream
{
println() //-----------> non-static
{
........
}
print() //-----------> non-static
{

........

........
}
}

class System
{
Static PrintStream out;
Static PrintStream err;
}

Examples of SOP Statements

Example

System.out.println("Hello"); // ---------> Hello
int x=10, y=20;
System.out.println("x"); // ---------> x
System.out.println(x); // ---------> 10
System.out.println("Hello"+x); // ---------> Hello10
System.out.println(x+y); // ---------> 30
System.out.println(x+y+"Hello"); // ---------> 1020Hello

Example

class Hello
{
public static void main(String arg[])
{
System.out.println("Hello word");
}
}

Output

Hello Word

Decision Making Statement in Java

Decision making statement statements is also called selection statement. That is depending on the
condition block need to be executed or not which is decided by condition. If the condition is "true"
statement block will be executed, if condition is "false" then statement block will not be executed.
In java there are three types of decision making statement.

 if

 if-else

 switch

if-then Statement

if-then is most basic statement of Decision making statement. It tells to program to execute a certain
part of code only if particular condition is true.

Syntax

if(condition)
 {
 Statement(s)
 }

Example if statement

class Hello
{
int a=10;
public static void main(String[] args)
{
if(a<15)
{
System.out.println("Hello good morning!");
}
}
}

Output

Hello good morning

if-else statement

In general it can be used to execute one block of statement among two blocks, in java language if
and else are the keyword in java.

Syntax

if(condition)
 {
 Statement(s)
 }
 else
 {
 Statement(s)
 }

In the above syntax whenever condition is true all the if block statement are executed, remaining
statement of the program by neglecting. If the condition is false else block statement executed and
neglecting if block statements.

Example if else

import java.util.Scanner;
class Oddeven
{
public static void main(String[] args)
{
int no;
Scanner s=new Scanner(System.in);
System.out.println("Enter any number :");
no=s.nextInt();
if(no%2==0)
{
System.out.println("Even number");

}
else
{
System.out.println("Odd number");
}
}
}

Output

Enter any number :
10
Even number

Switch Statement

The switch statement in java language is used to execute the code from multiple conditions or case.
It is same like if else-if ladder statement.

A switch statement work with byte, short, char and int primitive data type, it also works with
enumerated types and string.

Syntax

switch(expression/variable)
{
 case value:
 //statements
 // any number of case statements

 break; //optional
 default: //optional
 //statements
}

Rules for apply switch statement

With switch statement use only byte, short, int, char data type (float data type is not allowed). You
can use any number of case statements within a switch. Value for a case must be same as the
variable in switch.

Limitations of switch statement

Logical operators cannot be used with switch statement. For instance

Example

case k>=20: // not allowed

Example of switch case

import java.util.*;

class switchCase
{
public static void main(String arg[])
{
int ch;
System.out.println("Enter any number (1 to 7) :");
Scanner s=new Scanner(System.in);
ch=s.nextInt();
switch(ch)
{
case 1:
System.out.println("Today is Monday");
break;
case 2:
System.out.println("Today is Tuesday");
break;
case 3:
System.out.println("Today is Wednesday");
break;
case 4:
System.out.println("Today is Thursday");
break;
case 5:
System.out.println("Today is Friday");
break;
case 6:
System.out.println("Today is Saturday");
break;
case 7:
System.out.println("Today is Sunday");
default:
System.out.println("Only enter value 1 to 7");

} } }

Output

Enter any number (1 to 7) :
5
Today is Friday

Looping Statement in Java

Looping statement are the statements execute one or more statement repeatedly several number of
times. In java programming language there are three types of loops; while, for and do-while.

Why use loop ?

When you need to execute a block of code several number of times then you need to use looping
concept in Java language.

Advantage with looping statement

 Reduce length of Code

 Take less memory space.

 Burden on the developer is reducing.

 Time consuming process to execute the program is reduced.

Difference between conditional and looping statement

Conditional statement executes only once in the program where as looping statements executes
repeatedly several number of time.

While loop

In while loop first check the condition if condition is true then control goes inside the loop body
otherwise goes outside of the body. while loop will be repeats in clock wise direction.

Syntax

while(condition)
{
 Statement(s)
 Increment / decrements (++ or --);
}

Example while loop

class whileDemo
{
 public static void main(String args[])
 {
 int i=0;
 while(i<5)
 {
 System.out.println(+i);
 i++;
 }

Output

1
2
3
4
5

for loop--is a statement which allows code to be repeatedly executed. For loop contains 3 parts
Initialization, Condition and Increment or Decrements

Syntax

for (initialization; condition; increment)
{
 statement(s);
}

 Initialization: This step is execute first and this is execute only once when we are entering into the

loop first time. This step is allow to declare and initialize any loop control variables.

 Condition: This is next step after initialization step, if it is true, the body of the loop is executed, if it

is false then the body of the loop does not execute and flow of control goes outside of the for loop.

 Increment or Decrements: After completion of Initialization and Condition steps loop body code is

executed and then Increment or Decrements steps is execute. This statement allows to update any

loop control variables.

Flow Diagram

Control flow of for loop

 First initialize the variable

 In second step check condition

 In third step control goes inside loop body and execute.

 At last increase the value of variable

 Same process is repeat until condition not false.

Improve your looping conceptFor Loop

Display any message exactly 5 times.

Example of for loop

class Hello

http://www.sitesbay.com/cprogramming/c-for-loop

{
public static void main(String args[])
{
int i;
for (i=0: i<5; i++)
{
System.out.println("Hello Friends !");
}
}
}

Output

Hello Friends !
Hello Friends !
Hello Friends !
Hello Friends !
Hello Friends !

do-while

A do-while loop is similar to a while loop, except that a do-while loop is execute at least one time.

A do while loop is a control flow statement that executes a block of code at least once, and then
repeatedly executes the block, or not, depending on a given condition at the end of the block (in
while).

When use do..while loop

when we need to repeat the statement block at least one time then use do-while loop. In do-while
loop post-checking process will be occur, that is after execution of the statement block condition
part will be executed.

Syntax

do
{
Statement(s)

increment/decrement (++ or --)
}while();

In below example you can see in this program i=20 and we check condition i is less than 10, that
means condition is false but do..while loop execute onec and print Hello world ! at one time.

Example do..while loop

class dowhileDemo
{
 public static void main(String args[])
 {
 int i=20;
do
 {
System.out.println("Hello world !");
 i++;
}
while(i<10);
}
}

Output

Hello world !

Example do..while loop

class dowhileDemo
{
public static void main(String args[])
{
int i=0;
do
{
System.out.println(+i);
i++;
}
while(i<5);
}
}

Output

1
2
3
4
5

Wrapper classes in java

For each and every fundamental data type there exist a pre-defined class, Such predefined class is
known as wrapper class. The purpose of wrapper class is to convert numeric string data into
numerical or fundamental data.

Why use wrapper classes ?

We know that in java whenever we get input form user, it is in the form of string value so here we
need to convert these string values in different different datatype (numerical or fundamental data),
for this conversion we use wrapper classes.

Example of wrapper class

class WraperDemo
{
public static void main(String[] args)
{
String s[] = {"10", "20"};
System.out.println("Sum before:"+ s[0] + s[1]); // 1020
int x=Integer.parseInt(s[0]); // convert String to Integer
int y=Integer.parseInt(s[1]); // convert String to Integer
int z=x+y;
System.out.println("sum after: "+z); // 30
}
}

Output

Sum before: 1020
Sum after: 30

Explanation: In the above example 10 and 20 are store in String array and next we convert these
values in Integer using "int x=Integer.parseInt(s[0]);" and "int y=Integer.parseInt(s[1]);" statement
In "System.out.println("Sum before:"+ s[0] + s[1]);" Statement normally add two string and output
is 1020 because these are String numeric type not number.

Converting String data into fundamental or numerical

We know that every command line argument of java program is available in the main() method in
the form of array of object of string class on String data, one can not perform numerical operation.
To perform numerical operation it is highly desirable to convert numeric String into fundamental
numeric value.

Example

"10" --> numeric String --> only numeric string convert into numeric type or value.
"10x" --> alpha-numeric type --> this is not conversion.
"ABC" --> non-numeric String no conversion.
"A" --> char String no conversion.

Only 'A' is convert into ASCII value that is 65 but 'A' is not convert into numeric value because it is
a String value.

Fundamental data type and corresponding wrapper classes

The following table gives fundamental data type corresponding wrapper class name and conversion
method from numerical String into numerical values or fundamental value.

Fundamental
DataType

Wrapper
CalssName

Conversion method from numeric string into
fundamental or numeric value

byte Byte public static byte parseByte(String)
short Short public static short parseShort(String)
int Integer public static integer parseInt(String)
long Long public static long parseLong(String)
float Float public static float parseFloat(String)
double Double public static double parseDouble(String)
char Character
boolean Boolean public static boolean parseBoolean(String)

How to use wrapper class methods

All the wrapper class methods are static in nature so we need to call these method using
class.methodName().

 for Integer: int x=Integer.parseInt(String);

 for float: float x=Float.parseFloat(String);

 for double: double x=Double.parseDouble(String);

Each and every wrapper class contains the following generalized method for converting numeric
String into fundamental values.

Here xxx represents any fundamental data type.

Naming Conversion of Java

Sun micro system was given following conversions by declaring class, variable, method etc. So that
it is highly recommended to follow this conversion while writing real time code.

Why Using naming Conversion

Different Java programmers can have different styles and approaches to write program. By using
standard Java naming conventions they make their code easier to read for themselves and for other
programmers. Readability of Java code is important because it means less time is spent trying to
figure out what the code does, and leaving more time to fix or modify it.

1. Every package name should exist a lower case latter.

Example

package student; // creating package

import java.lang; // import package

2. First letter of every word of class name or interface name should exists in upper case.

Example

class StudentDetails
 {

 }
interface FacultyDetail
 {

 }

3. Every constant value should exists in upper case latter. It is containing more than one word than it
should be separated with underscore (-).

Example

class Student
 {
 final String COLLEGE_NAME="abcd";

 }

Note: if any variable is preceded by final keyword is known as constant value.

Example

class Student
 {
 Final String Student_name="abcd";
 }

While declaring variable name, method, object reference the first letter of first word should be exits
in lower case but from the second words onward the first letter should exists in upper case.

Example

class Student
{
String StudentName="xyz";
void instantStudentDetails();
{

}
Student final

CamelCase in java naming conventions

Java follows camelcase syntax for naming the class, interface, method and variable.
According to CamelCase if name is combined with two words, second word will start with
uppercase letter always. General Example studentName, customerAccount. In term of java
programming e.g. actionPerformed(), firstName, ActionEvent, ActionListener etc.

Import statements in Java

Import is a keyword in java language used to import the predefined properties of java API into
current working java program.

Syntax

 import package1.package2.......*;

Used to import all the predefined properties of given package.

Syntax

import pack1.package2.............Class_Name/Interface_Name;

Used to import specific class or interface in a java program.

Java API is a collection of package, package is a container which is collection of predefined classes
and interfaces.

Note: Import statement should be the first statement of the java programs.

Access Modifiers in Java

Access modifiers are those which are applied before data members or methods of a class. These are
used to where to access and where not to access the data members or methods. In Java
programming these are classified into four types:

 Private

 Default (not a keyword)

 Protected

 Public

Note: Default is not a keyword (like public, private, protected are keyword)

If we are not using private, protected and public keywords, then JVM is by default taking as default
access modifiers.

Access modifiers are always used for, how to reuse the features within the package and access the
package between class to class, interface to interface and interface to a class. Access modifiers
provide features accessing and controlling mechanism among the classes and interfaces.

Note: Protected members of the class are accessible within the same class and another class of same
package and also accessible in inherited class of another package.

Rules for access modifiers:

The following diagram gives rules for Access modifiers.

private: Private members of class in not accessible anywhere in program these are only accessible
within the class. Private are also called class level access modifiers.

Example

class Hello
{
private int a=20;
private void show()
{
System.out.println("Hello java");
}
}

public class Demo
{
 public static void main(String args[])
 {
 Hello obj=new Hello();
 System.out.println(obj.a); //Compile Time Error, you can't access private data
 obj.show(); //Compile Time Error, you can't access private methods
 }
}

public: Public members of any class are accessible anywhere in the program in the same class and
outside of class, within the same package and outside of the package. Public are also called
universal access modifiers.

Example

class Hello
{

public int a=20;
public void show()
{
System.out.println("Hello java");
}
}

public class Demo
{
 public static void main(String args[])
 {
 Hello obj=new Hello();
 System.out.println(obj.a);
 obj.show();
 }
}

Output

20
Hello Java

protected: Protected members of the class are accessible within the same class and another class of
the same package and also accessible in inherited class of another package. Protected are also called
derived level access modifiers.

In below the example we have created two packages pack1 and pack2. In pack1, class A is public so
we can access this class outside of pack1 but method show is declared as a protected so it is only
accessible outside of package pack1 only through inheritance.

Example

// save A.java
package pack1;
public class A
{
protected void show()
{
System.out.println("Hello Java");
}
}

//save B.java
package pack2;
import pack1.*;

class B extends A
{
 public static void main(String args[]){
 B obj = new B();
 obj.show();
 }
}

Output

Hello Java

default: Default members of the class are accessible only within the same class and another class of
the same package. The default are also called package level access modifiers.

Example

//save by A.java
package pack;
class A
{
 void show()
{
System.out.println("Hello Java");
}
}

//save by B.java
package pack2;
import pack1.*;
class B
{
 public static void main(String args[])
 {
 A obj = new A(); //Compile Time Error, can't access outside the package
 obj.show(); //Compile Time Error, can't access outside the package
 }
}

Output

Hello Java

Note: private access modifier is also known as native access modifier, default access modifier is
also known as package access modifier, protected access modifier is also known as an inherited
access modifier, public access modifier is also known as universal access modifier.

Array in java

Array is a collection of similar type of data. It is fixed in size means that you can't increase the size
of array at run time. It is a collection of homogeneous data elements. It stores the value on the basis
of the index value.

Advantage of Array

One variable can store multiple value: The main advantage of the array is we can represent
multiple value under the same name.

Code Optimization: No, need to declare a lot of variable of same type data, We can retrieve and
sort data easily.

Random access: We can retrieve any data from array with the help of the index value.

Disadvantage of Array

The main limitation of the array is Size Limit when once we declare array there is no chance to
increase and decrease the size of an array according to our requirement, Hence memory point of
view array concept is not recommended to use. To overcome this limitation in Java introduce the
collection concept.

Types of Array

There are two types of array in Java.

 Single Dimensional Array

 Multidimensional Array

Array Declaration

Single dimension array declaration.

Syntax

1. int[] a;
2. int a[];
3. int []a;

Note: At the time of array declaration we cannot specify the size of the array. For Example int[5] a;
this is wrong.

2D Array declaration.

Syntax

1. int[][] a;
2. int a[][];
3. int [][]a;
4. int[] a[];
5. int[] []a;
6. int []a[];

Array creation

Every array in a Java is an object, Hence we can create array by using new keyword.

Syntax

int[] arr = new int[10]; // The size of array is 10.
or
int[] arr = {10,20,30,40,50};

Accessing array elements

Access the elements of array by using index value of an elements.

Syntax

arrayname[n-1];

Access Array Elements

int[] arr={10,20,30,40};
System.out.println("Element at 4th place"+arr[2]);

Example of Array

public class ArrayEx
{
public static void main(String []args)
{
int arr[] = {10,20,30};
for (int i=0; i < arr.length; i++)
{
 System.out.println(arr[i]);
 }
 }
 }

Output

10
20
39

Note:

1) At the time of array creation we must be specify the size of array otherwise get an compile time
error. For Example
int[] a=new int[]; Invalid.
int[] a=new int[5]; Valid

2) If we specify the array size as negative int value, then we will get run-time error,
NegativeArraySizeException.

3) To specify the array size the allowed data types are byte, short, int, char If we use other data type
then we will get an Compile time error.

4) The maximum allowed size of array in Java is 2147483647 (It is the maximum value of int data
type)

Difference Between Length and Length() in Java

length: It is a final variable and only applicable for array. It represent size of array.

Example

int[] a=new int[10];
System.out.println(a.length); // 10

System.out.println(a.length()); // Compile time error

length(): It is the final method applicable only for String objects. It represents the number of
characters present in the String.

Example

String s="Java";
System.out.println(s.length()); // 4
System.out.println(s.length); // Compile time error

Final keyword in java

It is used to make a variable as a constant, Restrict method overriding, Restrict inheritance. It is
used at variable level, method level and class level. In java language final keyword can be used in
following way.

 Final at variable level

 Final at method level

 Final at class level

Final at variable level

Final keyword is used to make a variable as a constant. This is similar to const in other language. A
variable declared with the final keyword cannot be modified by the program after initialization.
This is useful to universal constants, such as "PI".

Final Keyword in java Example

public class Circle
{
public static final double PI=3.14159;

public static void main(String[] args)
{
System.out.println(PI);
}
}

Final at method level

It makes a method final, meaning that sub classes can not override this method. The compiler
checks and gives an error if you try to override the method.

When we want to restrict overriding, then make a method as a final.

Example

public class A
{
public void fun1()
{
.......
}
public final void fun2()
{
.......
}

}
class B extends A
{
public void fun1()
{
.......
}
public void fun2()
{
 // it gives an error because we can not override final method
}
}

Example of final keyword at method level

Example

class Employee
{
final void disp()
{
System.out.println("Hello Good Morning");
}
}
class Developer extends Employee
{
void disp()
{
System.out.println("How are you ?");
}
}
class FinalDemo
{
public static void main(String args[])
{
Developer obj=new Developer();
obj.disp();
}
}

Output

It gives an error

Final at class level

It makes a class final, meaning that the class can not be inheriting by other classes. When we want
to restrict inheritance then make class as a final.

Example

public final class A
{
......
......
}
public class B extends A
{
// it gives an error, because we can not inherit final class
}

Example of final keyword at class level

Example

final class Employee
{
int salary=10000;
}
class Developer extends Employee
{
void show()
{
System.out.println("Hello Good Morning");
}
}
class FinalDemo
{
public static void main(String args[])
{
Developer obj=new Developer();
Developer obj=new Developer();
obj.show();
}
}

Output

Output:
It gives an error

This keyword in java

this is a reference variable that refers to the current object. It is a keyword in java language
represents current class object

Usage of this keyword

 It can be used to refer current class instance variable.

 this() can be used to invoke current class constructor.

 It can be used to invoke current class method (implicitly)

 It can be passed as an argument in the method call.

 It can be passed as argument in the constructor call.

 It can also be used to return the current class instance.

Why use this keyword in java ?

The main purpose of using this keyword is to differentiate the formal parameter and data members
of class, whenever the formal parameter and data members of the class are similar then jvm get
ambiguity (no clarity between formal parameter and member of the class)

To differentiate between formal parameter and data member of the class, the data member of the
class must be preceded by "this".

"this" keyword can be use in two ways.

 this . (this dot)

 this() (this off)

this . (this dot)

which can be used to differentiate variable of class and formal parameters of method or constructor.

"this" keyword are used for two purpose, they are

 It always points to current class object.

 Whenever the formal parameter and data member of the class are similar and JVM gets an

ambiguity (no clarity between formal parameter and data members of the class).

To differentiate between formal parameter and data member of the class, the data members of the
class must be preceded by "this".

Syntax

this.data member of current class.

Note: If any variable is preceded by "this" JVM treated that variable as class variable.

Example without using this keyword

class Employee
{
 int id;
 String name;

 Employee(int id,String name)
 {
 id = id;
 name = name;
 }

 void show()
 {
 System.out.println(id+" "+name);
 }
 public static void main(String args[])
 {
 Employee e1 = new Employee(111,"Harry");
 Employee e2 = new Employee(112,"Jacy");
 e1.show();
 e2.show();
 }
}

Output

Output:
0 null
0 null

In the above example, parameter (formal arguments) and instance variables are same that is why we
are using "this" keyword to distinguish between local variable and instance variable.

Example of this keyword in java

class Employee
{
 int id;
 String name;

 Employee(int id,String name)
 {
 this.id = id;
 this.name = name;
 }
 void show()
 {
 System.out.println(id+" "+name);
 }
 public static void main(String args[])
 {
 Employee e1 = new Employee(111,"Harry");
 Employee e2 = new Employee(112,"Jacy");
 e1.show();
 e2.show();
 }
}

Output

111 Harry
112 Jacy

Note 1: The scope of "this" keyword is within the class.

Note 2: The main purpose of using "this" keyword in real life application is to differentiate

variable of class or formal parameters of methods or constructor (it is highly recommended to use
the same variable name either in a class or method and constructor while working with similar
objects).

Difference between this and super keyword

Super keyword is always pointing to base class (scope outside the class) features and "this"
keyword is always pointing to current class (scope is within the class) features.

Example when no need of this keyword

class Employee
{
 int id;
 String name;

 Employee(int i,String n)
 {
 id = i;
 name = n;
 }
 void show()
 {
 System.out.println(id+" "+name);
 }
 public static void main(String args[])
 {
 Employee e1 = new Employee(111,"Harry");
 Employee e2 = new Employee(112,"Jacy");
 e1.show();
 e2.show();
 }
}

Output

111 Harry
112 Jacy

In the above example, no need of use this keyword because parameter (formal arguments) and
instance variables are different. This keyword is only use when parameter (formal arguments) and
instance variables are same.

this ()

which can be used to call one constructor within the another constructor without creation of objects
multiple time for the same class.

Syntax

this(); // call no parametrized or default constructor
this(value1,value2,.....) //call parametrize constructor

this keyword used to invoke current class method (implicitly)

By using this keyword you can invoke the method of the current class. If you do not use the this

keyword, compiler automatically adds this keyword at time of invoking of the method.

Example of this keyword

class Student
{
 void show()
 {
 System.out.println("You got A+");
 }
 void marks()
 {
 this.show(); //no need to use this here because compiler does it.
 }
 void display()
 {
 show(); //compiler act marks() as this.marks()
 }
 public static void main(String args[])
 {
 Student s = new Student();
 s.display();
 } }

output: You got A+

Rules to use this()---this() always should be the first statement of the constructor. One constructor
can call only other single constructor at a time by using this().

Super keyword in java

Super keyword in java is a reference variable that is used to refer parent class object. Super is an
implicit keyword create by JVM and supply each and every java program for performing important
role in three places.

 At variable level

 At method level

 At constructor level

Need of super keyword:

Whenever the derived class is inherits the base class features, there is a possibility that base class
features are similar to derived class features and JVM gets an ambiguity. In order to differentiate
between base class features and derived class features must be preceded by super keyword.

Syntax

super.baseclass features.

Super at variable level:

Whenever the derived class inherit base class data members there is a possibility that base class data
member are similar to derived class data member and JVM gets an ambiguity.

In order to differentiate between the data member of base class and derived class, in the context of
derived class the base class data members must be preceded by super keyword.

Syntax

super.baseclass datamember name

if we are not writing super keyword before the base class data member name than it will be referred
as current class data member name and base class data member are hidden in the context of derived
class.

Program without using super keyword

Example

class Employee
{
float salary=10000;
}
class HR extends Employee
{
float salary=20000;
void display()
{
System.out.println("Salary: "+salary);//print current class salary
}
}
class Supervarible
{
public static void main(String[] args)
{
HR obj=new HR();
obj.display();
}
}

Output

Salary: 20000.0

In the above program in Employee and HR class salary is common properties of both class the
instance of current or derived class is referred by instance by default but here we want to refer base
class instance variable that is why we use super keyword to distinguish between parent or base class
instance variable and current or derived class instance variable.

Program using super keyword al variable level

Example

class Employee

{
float salary=10000;
}
class HR extends Employee
{
float salary=20000;
void display()
{
System.out.println("Salary: "+super.salary);//print base class salary
}
}
class Supervarible
{
public static void main(String[] args)
{
HR obj=new HR();
obj.display();
}
}

Output

Salary: 10000.0

Super at method level

The super keyword can also be used to invoke or call parent class method. It should be use in case
of method overriding. In other word super keyword use when base class method name and derived
class method name have same name.

Example of super keyword at method level

Example

class Student
{
void message()
{
System.out.println("Good Morning Sir");
}
}
class Faculty extends Student
{
void message()
{
System.out.println("Good Morning Students");
}

void display()
{
message();//will invoke or call current class message() method
super.message();//will invoke or call parent class message() method
}

public static void main(String args[])

{
Student s=new Student();
s.display();
}
}

Output

Good Morning Students
Good Morning Sir

In the above example Student and Faculty both classes have message() method if we call message()
method from Student class, it will call the message() method of Student class not of Person class
because priority of local is high.

In case there is no method in subclass as parent, there is no need to use super. In the example given
below message() method is invoked from Student class but Student class does not have message()
method, so you can directly call message() method.

Program where super is not required

Example

class Student
{
void message()
{
System.out.println("Good Morning Sir");
}
}

class Faculty extends Student
{

void display()
{
message();//will invoke or call parent class message() method
}

public static void main(String args[])
{
Student s=new Student();
s.display();
}
}

Output

 Good Morning Sir

Super at constructor level

The super keyword can also be used to invoke or call the parent class constructor. Constructor are
calling from bottom to top and executing from top to bottom.

To establish the connection between base class constructor and derived class constructors JVM

provides two implicit methods they are:

 Super()

 Super(...)

Super()

Super() It is used for calling super class default constructor from the context of derived class
constructors.

Super keyword used to call base class constructor

Syntax

class Employee
{
Employee()
{
System.out.println("Employee class Constructor");
}
}
class HR extends Employee
{
HR()
{
super(); //will invoke or call parent class constructor
System.out.println("HR class Constructor");
}
}
class Supercons
{
public static void main(String[] args)
{
HR obj=new HR();
}
}

Output

Employee class Constructor
HR class Constructor

Note: super() is added in each class constructor automatically by compiler.

In constructor, default constructor is provided by compiler automatically but it also adds super()
before the first statement of constructor.If you are creating your own constructor and you do not
have either this() or super() as the first statement, compiler will provide super() as the first
statement of the constructor.

Super(...)

Super(...) It is used for calling super class parameterize constructor from the context of derived
class constructor.

Important rules

Whenever we are using either super() or super(...) in the derived class constructors the super always
must be as a first executable statement in the body of derived class constructor otherwise we get a
compile time error.

Rule 1--- Whenever the derived class constructor want to call default constructor of base class, in
the context of derived class constructors we write super(). Which is optional to write because every
base class constructor contains single form of default constructor?

Rule 2 ---Whenever the derived class constructor wants to call parameterized constructor of base
class in the context of derived class constructor we must write super(...). which is mandatory to
write because a base class may contain multiple forms of parameterized constructors.

Synchronized Keyword in Java

Synchronized Keyword is used for when we want to allowed only one thread at a time then use
Synchronized modifier. If a method or block declared as a Synchronized then at a time only one
thread is allowed to operate on the given object.

Synchronized is a Modifier which is applicable for the method or block, we can not declare class or
variable with this modifier.

Advantage of Synchronized

The main advantage of Synchronized keyword is we can resolve data inconsistency problem.

Dis-Advantage of Synchronized

The main dis-advantage of Synchronized keyword is it increased the waiting time of thread and
effect performance of the system, Hence if there is no specific requirement it is never recommended
to use synchronized keyword.

Volatile Keyword in Java

If the variable keep on changing such type of variables we have to declare with volatile modifier.
Volatile is a modifier applicable only for variables but not for method and class.

If a variable declared as volatile then for every thread a separate local copy will be created. Every
intermediate modification performed by that thread will takes place in local copy instead of master
copy. Once the value got finalized just before terminating the thread the master copy value will be
updated with local stable value.

Advantage of Volatile

The main advantage of Volatile keyword is we can resolve data inconsistency problems.

Dis-Advantage of Volatile

The main dis-advantage of Volatile keyword is, crating and maintaining a separate copy for every
thread, increases complexity of the programming and effects performance of the system. Hence if
there is no specific requirement it is never recommended to use volatile keyword, and it is almost
outdated keyword.

Note: Volatile variable means its value keep on changing where as final variable means its value
never changes. Hence final-Volatile combination is illegal combination for variables.

Static Block in Java

Static block is a set of statements, which will be executed by the JVM before execution of main
method.

At the time of class loading if we want to perform any activity we have to define that activity inside
static block because this block execute at the time of class loading.

In a class we can take any number of static block but all these blocks will be execute from top to
bottom. Always a static block execute before main() method.

Syntax

static
{
........
//Set of Statements
........
}

Note: In real time application static block can be used whenever we want to execute any
instructions or statements before execution of main method.

Example of Static Block

class StaticDemo
{
static
{
System.out.println("Hello how are u ?");
}
public static void main(String args[])
{
System.out.println("This is main()");
}
}

Output

Hello how are u ?
This is main()

Run java program without main method

class StaticDemo
{
static
{
System.out.println("Hello how are u ?");
}
}

Output

Output:
Hello how are u ?

Exception is thread "main" java.lang.no-suchmethodError:Main

Note: "Exception is thread "main" java.lang.no-suchmethodError:Main" warning is given in java
1.7 and its above versions

More than one static block in a program

class StaticDemo
{
static
{
System.out.println("First static block");
}
static
{
System.out.println("Second Static block");
}
public static void main(String args[])
{
System.out.println("This is main()");
}
}

Output

Output:
First static block
Second static block
This is main()

Note: "Here static block run according to there order (sequence by) from top to bottom.

Why a static block executes before the main method ?

A class has to be loaded in main memory before we start using it. Static block is executed during
class loading. This is the reason why a static block executes before the main method.

Inner Classes in Java Programming

If one class is existing within another class is known as inner class or nested class

Syntax

class Outerclass_name
{
.....
.....

class Innerclass_name1
{
.....
.....
}
class Innerclass_name1
{
.....

.....
}
.....
}

The main purpose of using inner class

 To provide more security by making those inner class properties specific to only outer class

but not for external classes.

 To make more than one property of classes private properties.

Private is a keyword in java language, it is preceded by any variable that property can be access
only within the class but not outside of it (provides more security).

If more than one property of class wants to make as private properties than all can capped under
private inner class.

Syntax

class Outerclass_name
{
private class Innerclass_name
{
.....
..... //private properties
}
}

Note:No outer class made as private class otherwise this is not available for JVM at the time of
execution.

Rules to access properties of inner classes

 Inner class properties can be accessed in the outer class with the object reference but not

directly.

 Outer class properties can be access directly within the inner class.

 Inner class properties can't be accessed directly or by creating directly object.

Note: In special situation inner class property can be accessed in the external class by creating
special objects with the reference of its outer class.

Example

class A //outer class
{
void fun1()
{
System.out.println("Hello fun1()"); // inner class properties should be access using
 //object reference in outer class.
B ob=new B();
 ob.x=10
System.out.println("x= "+ob.x);
ob.fun2();
}

void fun3() // outer class fun3()
{
System.out.println("Hello fun3()");
}
class B // inner class
{
int x; // inner class variable
void fun2() //inner class fun2()
{
System.out.println("Hello fun2()");
fun3(); //outer class properties can be access directly
}
}
}

class C // external class
{
void fun3()
{
System.out.println("Hello fun3()");
}
}

class IncDemo
{
public static void main(String args[])
{
A oa=new A();
oa.fun1();
C oc=new C();
oc.fun3();
}
}

Output

Hello fun1()
X=10
Hello fun2()
Hello fun3()

Accessing inner class properties in the external class

1. If inner class in non static the object can be created with the following syntax

Syntax

class Outer_class
{
class Inner_class
{
.....
.....
}
.....

.....
}
class External_class
{
Outer_class.Inner_Class objectrefernce=new Outer_Class.External_Class();
}

2. If inner class is static the object reference can be created with the following syntax

Syntax

class Outer_class
{
static class Inner_Class
{
.....
.....
}
}
class External_Class
{
Outer_class.Inner_Class objectrefernce=new Outer_Class.External_Class();
}
}

Example

class A //Outer class
{
class B // non-static inner class
{
int x; //inner class variable
void fun1() //inner class fun1()
{
System.out.println("Hello fun1()");
}
}
static class C //static inner class
{
int y=20; // inner class variable
void fun2()
{
System.out.println("Hello fun2()");
}
}
}

class IncDemo
{
public static void main(String args[])
{
A.B ob=new A().new.B();
System.out.println(ob.x);
ob.fun1();

A.C oc=new A.C();
System.out.println(oc.y);
oc.fun2();
}
}

Abstract class in Java

We know that every Java program must start with a concept of class that is without the class
concept there is no Java program perfect.
In Java programming we have two types of classes they are

 Concrete class

 Abstract class

Concrete class in Java

A concrete class is one which is containing fully defined methods or implemented method.

Example

class Helloworld
{
void display()
{
System.out.println("Good Morning........");
}
}

Here Helloworld class is containing a defined method and object can be created directly.

Create an object

Helloworld obj=new Helloworld();
obj.display();

Every concrete class has specific features and these classes are used for specific requirement, but
not for common requirement.

If we use concrete classes for fulfill common requirements than such application will get the
following limitations.

 Application will take more amount of memory space (main memory).

 Application execution time is more.

 Application performance is decreased.

To overcome above limitation you can use abstract class.

Abstract class in Java

A class that is declared with abstract keyword, is known as abstract class. An abstract class is one
which is containing some defined method and some undefined method. In java programming
undefined methods are known as un-Implemented, or abstract method.

Syntax

abstract class className
{
......
}

Example

abstract class A
{
.....
}

If any class have any abstract method then that class become an abstract class.

Example

class Vachile
{
abstract void Bike();
}

Class Vachile is become an abstract class because it have abstract Bike() method.

Make class as abstract class

To make the class as abstract class, whose definition must be preceded by a abstract keyword.

Example

abstract class Vachile
{
......
}

Abstract method

An abstract method is one which contains only declaration or prototype but it never contains body
or definition. In order to make any undefined method as abstract whose declaration is must be
predefined by abstract keyword.

Syntax

abstract ReturnType methodName(List of formal parameter)

Example

abstract void sum();
abstract void diff(int, int);

Example of abstract class

abstract class Vachile
{
 abstract void speed(); // abstract method
}
class Bike extends Vachile
{
void speed()
{
System.out.println("Speed limit is 40 km/hr..");
}
public static void main(String args[])
{
 Vachile obj = new Bike(); //indirect object creation
 obj.speed();
 }
}

Output

Speed limit is 40 km/hr..

Create an Object of abstract class

An object of abstract class cannot be created directly, but it can be created indirectly. It means you
can create an object of abstract derived class. You can see in above example

Example

Vachile obj = new Bike(); //indirect object creation

Important Points about abstract class
 Abstract class of Java always contains common features.

 Every abstract class participates in inheritance.

 Abstract class definitions should not be made as final because abstract classes always participate in

inheritance classes.

 An object of abstract class cannot be created directly, but it can be created indirectly.

 All the abstract classes of Java makes use of polymorphism along with method overriding for

business logic development and makes use of dynamic binding for execution logic.
Advantage of abstract class

 Less memory space for the application and Less execution time

 More performance

Why abstract class have no abstract static method ?
In abstract classes we have the only abstract instance method, but not containing abstract static
methods because every instance method is created for performing repeated operation where as static
method is created for performing a one time operations in other word every abstract method is
instance but not static.
Abstract base class
An abstract base class is one which is containing physical representation of abstract methods which
are inherited by various sub classes.
Abstract derived class
An abstract derived class is one which is containing logic representation of abstract methods which
are inherited from abstract base class with respect to both abstract base class and abstract derived
class one can not create objects directly, but we can create their objects indirectly both abstract base
class and abstract derived class are always reusable by various sub classes.
When the derived class inherits multiple abstract method from abstract base class and if the derived
class is not defined at least one abstract method then the derived class is known as abstract derived
class and whose definition must be made as abstract by using abstract keyword. (When the derived
class becomes an abstract derived class). If the derived class defined all the abstract methods which
are inherited from abstract Base class, then the derived class is known as concrete derived class.

Example of abstract class having method body

abstract class Vachile
{
 abstract void speed();
 void mileage()
{
 System.out.println("Mileage is 60 km/ltr..");
}
}
class Bike extends Vachile
{
void speed()
{

System.out.println("Speed limit is 40 km/hr..");
}
public static void main(String args[])
{
 Vachile obj = new Bike();
 obj.speed();
 obj.mileage();
 }
}

Output

Mileage is 60 km/ltr..
Speed limit is 40 km/hr..

Example of abstract class having constructor, data member, methods

abstract class Vachile
{
 int limit=40;
 Vachile()
{
System.out.println("constructor is invoked");
}
 void getDetails()
{
System.out.println("it has two wheels");
}
 abstract void run();
}

class Bike extends Vachile
{
 void run()
{
System.out.println("running safely..");
}
 public static void main(String args[])
{
 Vachile obj = new Bike();
 obj.run();
 obj.getDetails();
 System.out.println(obj.limit);
 } }

Output

constructor is invoked
running safely..
it has two wheels
40

Difference Between Abstract class and Concrete class

Concrete class Abstract class

A Concrete class is used for specific requirement
Abstract class is used to fulfill a common
requirement.

Object of concrete class can create directly.
Object of an abstract class can not create directly
(can create indirectly).

Concrete class containing fully defined methods
or implemented method.

Abstract class has both undefined method and
defined method.

Static and non-static variable in Java

Difference Between Static and non-Static Variable in Java

The variable of any class are classified into two types;

 Static or class variable

 Non-static or instance variable

Static variable in Java

Memory for static variable is created only one in the program at the time of loading of class. These
variables are preceded by static keyword. tatic variable can access with class reference.

Non-static variable in Java

Memory for non-static variable is created at the time of create an object of class. These variable
should not be preceded by any static keyword Example: These variables can access with object
reference.

Difference between non-static and static variable

Non-static variable Static variable

1

These variable should not be preceded by
any static keyword Example:

class A
{
int a;
}

These variables are preceded by static keyword.

Example

class A
{
static int b;
}

2
Memory is allocated for these variable
whenever an object is created

Memory is allocated for these variable at the time
of loading of the class.

3
Memory is allocated multiple time
whenever a new object is created.

Memory is allocated for these variable only once in
the program.

4
Non-static variable also known as instance
variable while because memory is allocated
whenever instance is created.

Memory is allocated at the time of loading of class
so that these are also known as class variable.

5 Non-static variable are specific to an object
Static variable are common for every object that
means there memory location can be sharable by
every object reference or same class.

6 Non-static variable can access with object
reference.

Static variable can access with class reference.

Syntax

Syntax

obj_ref.variable_name
class_name.variable_name

Note: static variable not only can be access with class reference but also some time it can be
accessed with object reference.

Example of static and non-static variable.

Example

class Student
{
int roll_no;
float marks;
String name;
static String College_Name="ITM";
}
class StaticDemo
{
public static void main(String args[])
{
Student s1=new Student();
s1.roll_no=100;
s1.marks=65.8f;
s1.name="abcd";
System.out.println(s1.roll_no);
System.out.println(s1.marks);
System.out.println(s1.name);
System.out.println(Student.College_Name);
//or System.out.println(s1. College_Name); but first is use in real time.
Student s2=new Student();
s2.roll_no=200;
s2.marks=75.8f;
s2.name="zyx";
System.out.println(s2.roll_no);
System.out.println(s2.marks);
System.out.println(s2.name);
System.out.println(Student.College_Name);
}
}

Output

100
65.8
abcd
ITM
200
75.8
zyx
ITM

Note: In the above example College_Name variable is commonly sharable by both S1 and S2
objects.

Understand static and non-static variable using counter

Program of counter without static variable

In this example, we have created an instance variable named count which is incremented in the
constructor. Since instance variable gets the memory at the time of object creation, each object will
have the copy of the instance variable, if it is incremented, it won't reflect to other objects. So each
objects will have the value 1 in the count variable.

Example

class Counter
{
int count=0;//will get memory when instance is created
Counter()
{
count++;
System.out.println(count);
}
public static void main(String args[])
{
Counter c1=new Counter();
Counter c2=new Counter();
Counter c3=new Counter();
}
}

Output

1
1
1

Program of counter by static variable

As we have mentioned above, static variable will get the memory only once, if any object changes
the value of the static variable, it will retain its value.

Example

class Counter
{
static int count=0; //will get memory only once
Counter()
{
count++;
System.out.println(count);
}
public static void main(String args[])
{
Counter c1=new Counter();
Counter c2=new Counter();
Counter c3=new Counter();
}
}

Output

1
2
3

Static and non-Static Method in java

Difference between Static and non-static method in Java

In case of non-static method memory is allocated multiple time whenever method is calling. But
memory for static method is allocated only once at the time of class loading. Method of a class can
be declared in two different ways

 Non-static methods

 Static methods

Difference between non-static and static Method

Non-Static method Static method

1

These method never be preceded by static
keyword
Example:

void fun1()
{

}

These method always preceded by static keyword
Example:

static void fun2()
{
......
......
}

2 Memory is allocated multiple time Memory is allocated only once at the time of class

whenever method is calling. loading.

3
It is specific to an object so that these are
also known as instance method.

These are common to every object so that it is also
known as member method or class method.

4

These methods always access with object
reference
Syntax:

Objref.methodname();

These property always access with class reference
Syntax:

className.methodname();

5
If any method wants to be execute multiple
time that can be declare as non static.

If any method wants to be execute only once in the
program that can be declare as static .

Note: In some cases static methods not only can access with class reference but also can access
with object reference.

Example of Static and non-Static Method

Example

class A
{
void fun1()
{
System.out.println("Hello I am Non-Static");
}
static void fun2()
{
System.out.println("Hello I am Static");
}
}
class Person
{
public static void main(String args[])
{
A oa=new A();
 oa.fun1(); // non static method
 A.fun2(); // static method
}
}

Output

Hello I am Non-Static
Hello I am Static

Following table represent how the static and non-static properties are accessed in the different static
or non-static method of same class or other class.

Program to accessing static and non-static properties.

Example

class A
{
int y;
void f2()
{
System.out.println("Hello f2()");
}
}
class B
{
int z;
void f3()
{
System.out.println("Hello f3()");
A a1=new A();
a1.f2();
}
}
class Sdemo
{
static int x;
static void f1()
{
System.out.println("Hello f1()");
}
public static void main(String[] args)
{
x=10;
System.out.println("x="+x);
f1();
System.out.println("Hello main");
B b1=new B();
b1.f3();

}
}

Constructor in Java

constructor in Java is a special member method which will be called implicitly (automatically) by
the JVM whenever an object is created for placing user or programmer defined values in place of
default values. In a single word constructor is a special member method which will be called
automatically whenever object is created.

The purpose of constructor is to initialize an object called object initialization. Constructors are
mainly create for initializing the object. Initialization is a process of assigning user defined values at
the time of allocation of memory space.

Syntax

className()
{
.......
.......
}

Advantages of constructors in Java

 A constructor eliminates placing the default values.

 A constructor eliminates calling the normal or ordinary method implicitly.

How Constructor eliminate default values ?

Constructor are mainly used for eliminate default values by user defined values, whenever we
create an object of any class then its allocate memory for all the data members and initialize there
default values. To eliminate these default values by user defined values we use constructor.

Constructor Example in Java

class Sum
{
int a,b;
Sum()
{
a=10;
b=20;
}
public static void main(String s[])
{
Sum s=new Sum();
c=a+b;
System.out.println("Sum: "+c);
}
}

Output

Sum: 30

In above example when we create an object of "Sum" class then constructor of this class call and
initialize user defined value in a=10 and b=20. if we can not create constructor of Sum class then it
print " Sum: 0 " because default values of integer is zero.

Rules or properties of a constructor

 Constructor will be called automatically when the object is created.

 Constructor name must be similar to name of the class.

 Constructor should not return any value even void also. Because basic aim is to place the

value in the object. (if we write the return type for the constructor then that constructor will
be treated as ordinary method).

 Constructor definitions should not be static. Because constructors will be called each and

every time, whenever an object is creating.

 Constructor should not be private provided an object of one class is created in another class

(Constructor can be private provided an object of one class created in the same class).

 Constructors will not be inherited from one class to another class (Because every class

constructor is create for initializing its own data members).

 The access specifier of the constructor may or may not be private.

1. If the access specifier of the constructor is private then an object of corresponding class can
be created in the context of the same class but not in the context of some other classes.

2. If the access specifier of the constructor is not private then an object of corresponding class
can be created both in the same class context and in other class context.

Difference between Method and Constructor

Method Constructor
1 Method can be any user defined name Constructor must be class name
2 Method should have return type It should not have any return type (even void)

3
Method should be called explicitly either with
object reference or class reference

It will be called automatically whenever object is
created

4
Method is not provided by compiler in any
case.

The java compiler provides a default constructor
if we do not have any constructor.

Types of constructors

Based on creating objects in Java constructor are classified in two types. They are

 Default or no argument Constructor

 Parameterized constructor.

Default Constructor

A constructor is said to be default constructor if and only if it never take any parameters.

If any class does not contain at least one user defined constructor than the system will create a
default constructor at the time of compilation it is known as system defined default constructor.

Syntax of Default Constructor

class className
{
..... // Call default constructor
clsname ()
{
Block of statements; // Initialization
}
.....
}

Note: System defined default constructor is created by java compiler and does not have any
statement in the body part. This constructor will be executed every time whenever an object is
created if that class does not contain any user defined constructor.

Example of default constructor.

In below example, we are creating the no argument constructor in the Test class. It will be invoked
at the time of object creation.

Example

//TestDemo.java
class Test
{
int a, b;
Test ()
{
System.out.println("I am from default Constructor...");
a=10;
b=20;
System.out.println("Value of a: "+a);
System.out.println("Value of b: "+b);
}
};
class TestDemo

{
public static void main(String [] args)
{
Test t1=new Test ();
}
};

Output

Output:
I am from default Constructor...
Value of a: 10
Value of b: 20

Rule-1:

Whenever we create an object only with default constructor, defining the default constructor is
optional. If we are not defining default constructor of a class, then JVM will call automatically
system defined default constructor. If we define, JVM will call user defined default constructor.

Purpose of default constructor?

Default constructor provides the default values to the object like 0, 0.0, null etc. depending on their
type (for integer 0, for string null).

Example of default constructor that displays the default values

class Student
{
int roll;
float marks;
String name;
void show()
{
System.out.println("Roll: "+roll);
System.out.println("Marks: "+marks);
System.out.println("Name: "+name);
}
}
class TestDemo
{
public static void main(String [] args)
{
Student s1=new Student();
s1.show();
}
}

Output

Roll: 0
Marks: 0.0
Name: null

Explanation: In the above class, we are not creating any constructor so compiler provides a default

constructor. Here 0, 0.0 and null values are provided by default constructor.

parameterized constructor

If any constructor contain list of variable in its signature is known as paremetrized constructor. A
parameterized constructor is one which takes some parameters.

Syntax

class ClassName
{
.......
ClassName(list of parameters) //parameterized constructor
{
.......
}
.......
}

Syntax to call parametrized constructor

ClassName objref=new ClassName(value1, value2,.....);
 OR
new ClassName(value1, value2,.....);

Example of Parametrized Constructor

class Test
{
int a, b;
Test(int n1, int n2)
{
System.out.println("I am from Parameterized Constructor...");
a=n1;
b=n2;
System.out.println("Value of a = "+a);
System.out.println("Value of b = "+b);
}
};
class TestDemo1
{
public static void main(String k [])
{
Test t1=new Test(10, 20);
}
};

Important points Related to Parameterized Constructor

 Whenever we create an object using parameterized constructor, it must be define

parameterized constructor otherwise we will get compile time error. Whenever we define the
objects with respect to both parameterized constructor and default constructor, It must be
define both the constructors.

 In any class maximum one default constructor but 'n' number of parameterized constructors.

Example of default constructor, parameterized constructor and overloaded constructor

Example

class Test
{
int a, b;
Test ()
{
System.out.println("I am from default Constructor...");
a=1;
b=2;
System.out.println("Value of a ="+a);
System.out.println("Value of b ="+b);
}
Test (int x, int y)
{
System.out.println("I am from double Paraceterized Constructor");
a=x;
b=y;
System.out.println("Value of a ="+a);
System.out.println("Value of b ="+b);
}
Test (int x)
{
System.out.println("I am from single Parameterized Constructor");
a=x;
b=x;
System.out.println("Value of a ="+a);
System.out.println("Value of b ="+b);
}
Test (Test T)
{
System.out.println("I am from Object Parameterized Constructor...");
a=T.a;
b=T.b;
System.out.println("Value of a ="+a);
System.out.println("Value of b ="+b);
}
};
class TestDemo2
{
public static void main (String k [])
{
Test t1=new Test ();
Test t2=new Test (10, 20);
Test t3=new Test (1000);
Test t4=new Test (t1);
}
};

Note By default the parameter passing mechanism is call by reference.

Constructor Overloading

Constructor overloading is a technique in Java in which a class can have any number of
constructors that differ in parameter lists.The compiler differentiates these constructors by taking
the number of parameters, and their type.
In other words whenever same constructor is existing multiple times in the same class with different
number of parameters or order of parameters or type of parameters is known as Constructor
overloading.
In general constructor overloading can be used to initialized same or different objects with different
values.

Syntax

class ClassName
{
ClassName()
{
..........
..........
}
ClassName(datatype1 value1)
{.......}
ClassName(datatype1 value1, datatype2 value2)
{.......}
ClassName(datatype2 variable2)
{.......}
ClassName(datatype2 value2, datatype1 value1)
{.......}
........
}

Why overriding is not possible at constructor level.

The scope of constructor is within the class so that it is not possible to achieved overriding at
constructor level.

Relationship in Java

Type of relationship always makes to understand how to reuse the feature from one class to another
class. In java programming we have three types of relationship they are.

 Is-A Relationship

 Has-A Relationship

 Uses-A Relationship

Is-A relationship

In Is-A relationship one class is obtaining the features of another class by using inheritance concept
with extends keywords.

In a IS-A relationship there exists logical memory space.

Example of Is-A Relation

Example

class Faculty
{
float salary=30000;
}
class Science extends Faculty
{
float bonous=2000;
public static void main(String args[])
{
Science obj=new Science();
System.out.println("Salary is:"+obj.salary);
System.out.println("Bonous is:"+obj.bonous);
}
}

Output

Salary is: 30000.0
Bonous is: 2000.0

Has-A relationship

In Has-A relationship an object of one class is created as data member in another class the
relationship between these two classes is Has-A.

In Has-A relationship there existed physical memory space and it is also known as part of or kind of
relationship.

Example of Has-A Relation

Example

class Employee
{
float salary=30000;
}
class Developer extends Employee
{
float bonous=2000;
public static void main(String args[])
{
Employee obj=new Employee();
System.out.println("Salary is:"+obj.salary);
}
}

Output

Salary is: 30000.0

Uses-A relationship

A method of one class is using an object of another class the relationship between these two classes
is known as Uses-A relationship.

As long as the method is execution the object space (o1) exists and once the method execution is
completed automatically object memory space will be destroyed.

Example of Uses-A Relation

Example

class Employee
{
float salary=30000;
}
class Salary extends Employee
{
void disp()
{
float bonous=1000;
Employee obj=new Employee();
float Total=obj.salary+bonous;
System.out.println("Total Salary is:"+Total);
}
}
class Developer
{
public static void main(String args[])
{
Salary s=new Salary();
s.disp();
}
}

Output

Total Salary is: 31000.0

Note 1: The default relationship in java is Is-A because for each and every class in java there exist
an implicit predefined super class is java.lang.Object.

Note 2: The universal example for Has-A relationship is System.out (in System.out statement, out is
an object of printStream class created as static data member in another system class and printStream
class is known as Has-A relationship).

Note 3: Every execution logic method (main()) of execution logic is making use of an object of
business logic class and business logic class is known as Uses-A relationship.

Inheritance in Java

The process of obtaining the data members and methods from one class to another class is known as
inheritance. It is one of the fundamental features of object-oriented programming.

Important points

 In the inheritance the class which is give data members and methods is known as base or

super or parent class.

 The class which is taking the data members and methods is known as sub or derived or child

class.

 The data members and methods of a class are known as features.

 The concept of inheritance is also known as re-usability or extendable classes or sub classing

or derivation.

Why use Inheritance ?

 For Method Overriding (used for Runtime Polymorphism).

 It's main uses are to enable polymorphism and to be able to reuse code for different classes

by putting it in a common super class

 For code Re-usability

Syntax of Inheritance

class Subclass-Name extends Superclass-Name
{
 //methods and fields
}

Real Life Example of Inheritance in Java

The real life example of inheritance is child and parents, all the properties of father are inherited by
his son.

In the above diagram data members and methods are represented in broken line are inherited from

faculty class and they are visible in student class logically.

Advantage of inheritance

If we develop any application using concept of Inheritance than that application have following
advantages,

 Application development time is less.

 Application take less memory.

 Application execution time is less.

 Application performance is enhance (improved).

 Redundancy (repetition) of the code is reduced or minimized so that we get consistence

results and less storage cost.

Note: In Inheritance the scope of access modifier increasing is allow but decreasing is not allow.
Suppose in parent class method access modifier is default then it's present in child class with default
or public or protected access modifier but not private(it decreased scope).

Tpyes of Inheritance

Based on number of ways inheriting the feature of base class into derived class we have five types
of inheritance; they are:

 Single inheritance

 Multiple inheritance

 Hierarchical inheritance

 Multilevel inheritance

 Hybrid inheritance

Single inheritance

In single inheritance there exists single base class and single derived class.

Example of Single Inheritance

class Faculty
{
float salary=30000;
}
class Science extends Faculty
{
float bonous=2000;
public static void main(String args[])
{
Science obj=new Science();
System.out.println("Salary is:"+obj.salary);
System.out.println("Bonous is:"+obj.bonous);
}
}

Output

Salary is: 30000.0

Bonous is: 2000.0

Multilevel inheritances in Java

In Multilevel inheritances there exists single base class, single derived class and multiple
intermediate base classes.

Single base class + single derived class + multiple intermediate base classes.

Intermediate base classes

An intermediate base class is one in one context with access derived class and in another context
same class access base class.

Hence all the above three inheritance types are supported by both classes and interfaces.

Example of Multilevel Inheritance

class Faculty
{
float total_sal=0, salary=30000;
}

class HRA extends Faculty
{
float hra=3000;
}

class DA extends HRA
{
float da=2000;
}

class Science extends DA
{
float bonous=2000;
public static void main(String args[])
{
Science obj=new Science();
obj.total_sal=obj.salary+obj.hra+obj.da+obj.bonous;
System.out.println("Total Salary is:"+obj.total_sal);
}
}

Output

Total Salary is: 37000.0

Multiple inheritance

In multiple inheritance there exist multiple classes and singel derived class.

The concept of multiple inheritance is not supported in java through concept of classes but it can be
supported through the concept of interface.

Hybrid inheritance

Combination of any inheritance type

In the combination if one of the combination is multiple inheritance then the inherited combination
is not supported by java through the classes concept but it can be supported through the concept of
interface.

Inheriting the feature from base class to derived class

In order to inherit the feature of base class into derived class we use the following syntax

Syntax

class ClassName-2 extends ClasssName-1
{
variable declaration;
Method declaration;
}

Explanation

1. ClassName-1 and ClassName-2 represents name of the base and derived classes
respectively.

2. extends is one of the keyword used for inheriting the features of base class into derived class
it improves the functionality of derived class.

Important Points for Inheritance:

 In java programming one derived class can extends only one base class because java

programming does not support multiple inheritance through the concept of classes, but it can
be supported through the concept of Interface.

 Whenever we develop any inheritance application first create an object of bottom most

derived class but not for top most base class.

 When we create an object of bottom most derived class, first we get the memory space for

the data members of top most base class, and then we get the memory space for data
member of other bottom most derived class.

 Bottom most derived class contains logical appearance for the data members of all top most

base classes.

 If we do not want to give the features of base class to the derived class then the definition of

the base class must be preceded by final hence final base classes are not reusable or not
inheritable.

 If we are do not want to give some of the features of base class to derived class than such

features of base class must be as private hence private features of base class are not
inheritable or accessible in derived class.

 Data members and methods of a base class can be inherited into the derived class but

constructors of base class can not be inherited because every constructor of a class is made
for initializing its own data members but not made for initializing the data members of other
classes.

 An object of base class can contain details about features of same class but an object of base

class never contains the details about special features of its derived class (this concept is
known as scope of base class object).

 For each and every class in java there exists an implicit predefined super class called

java.lang.Object. because it providers garbage collection facilities to its sub classes for
collecting un-used memory space and improved the performance of java application.

Example of Inheritance

class Faculty
{
float salary=30000;
}
class Science extends Faculty
{
float bonous=2000;
public static void main(String args[])
{
Science obj=new Science();
System.out.println("Salary is:"+obj.salary);
System.out.println("Bonous is:"+obj.bonous);
}
}

Output

Salary is: 30000.0
Bonous is: 2000.0

Why multiple inheritance is not supported in java?

Due to ambiguity problem java does not support multiple inheritance at class level.

Example

class A
{

void disp()
{
System.out.println("Hello");
}
}
class B
{
void disp()
System.out.println("How are you ?");
}
}
class C extends A,B //suppose if it were
{
Public Static void main(String args[])
{
C obj=new C();
obj.disp();//Now which disp() method would be invoked?
}
}

In above code we call both class A and class B disp() method then it confusion which class method
is call. So due to this ambiguity problem in java do not use multiple inheritance at class level, but it
support at interface level.

Difference between Java Inheritance and C++ Inheritance

The main difference between java Inheritance and C++ Inheritance is; Java doesn’t support multiple
inheritance but C++ support.

Method Overloading in Java

Whenever same method name is exiting multiple times in the same class with different number of
parameter or different order of parameters or different types of parameters is known as method
overloading.

Why use method Overloading in Java ?

Suppose we have to perform addition of given number but there can be any number of arguments, if
we write method such as a(int, int)for two arguments, b(int, int, int) for three arguments then it is
very difficult for you and other programmer to understand purpose or behaviors of method they can
not identify purpose of method. So we use method overloading to easily figure out the program. For
example above two methods we can write sum(int, int) and sum(int, int, int) using method
overloading concept.

Syntax

class class_Name
{
Returntype method()
{.........}
Returntype method(datatype1 variable1)
{.........}
Returntype method(datatype1 variable1, datatype2 variable2)
{.........}

Returntype method(datatype2 variable2)
{.........}
Returntype method(datatype2 variable2, datatype1 variable1)
{.........}
}

Different ways to overload the method

There are two ways to overload the method in java

 By changing number of arguments or parameters

 By changing the data type

By changing number of arguments

In this example, we have created two overloaded methods, first sum method performs addition of
two numbers and second sum method performs addition of three numbers.

Example Method Overloading in Java

class Addition
{
void sum(int a, int b)
{
System.out.println(a+b);
}
void sum(int a, int b, int c)
{
System.out.println(a+b+c);
}
public static void main(String args[])
{
Addition obj=new Addition();
obj.sum(10, 20);
obj.sum(10, 20, 30);
}
}

Output

30
60

By changing the data type

In this example, we have created two overloaded methods that differs in data type. The first sum
method receives two integer arguments and second sum method receives two float arguments.

Example Method Overloading in Java

class Addition
{
void sum(int a, int b)
{
System.out.println(a+b);
}

void sum(float a, float b)
{
System.out.println(a+b);
}
public static void main(String args[])
{
Addition obj=new Addition();
obj.sum(10, 20);
obj.sum(10.05, 15.20);
}
}

Output

30
25.25

Why Method Overloading is not possible by changing the return type of method?

In java, method overloading is not possible by changing the return type of the method because there
may occur ambiguity. Let's see how ambiguity may occur:

because there was problem:

Example of Method Overloading

class Addition
{
 int sum(int a, int b)
 {
 System.out.println(a+b);
 }
 double sum(int a, int b)
 {
 System.out.println(a+b);
 }
 public static void main(String args[])
 {
 Addition obj=new Addition();
 int result=obj.sum(20,20); //Compile Time Error
 }
}

Explanation of Code

Example

int result=obj.sum(20,20);

Here how can java determine which sum() method should be called

Note: The scope of overloading is within the class.

Any object reference of class can call any of overloaded method.

Can we overload main() method ?

Yes, We can overload main() method. A Java class can have any number of main() methods. But run
the java program, which class should have main() method with signature as "public static void
main(String[] args). If you do any modification to this signature, compilation will be successful.
But, not run the java program. we will get the run time error as main method not found.

Example of override main() method

Example

public class mainclass
{
public static void main(String[] args)
{
System.out.println("Execution starts from Main()");
}
void main(int args)
{
System.out.println("Override main()");
}
double main(int i, double d)
{
System.out.println("Override main()");
return d;
}}

Output

Execution starts from Main()

Method Overriding in Java

Whenever same method name is existing in both base class and derived class with same types of
parameters or same order of parameters is known as method Overriding. Here we will discuss
about Overriding in Java.

Note: Without Inheritance method overriding is not possible.

Advantage of Java Method Overriding

 Method Overriding is used to provide specific implementation of a method that is already

provided by its super class.

 Method Overriding is used for Runtime Polymorphism

Rules for Method Overriding

 method must have same name as in the parent class.

 method must have same parameter as in the parent class.

 must be IS-A relationship (inheritance).

Understanding the problem without method overriding

Lets understand the problem that we may face in the program if we do not use method overriding.

Example Method Overriding in Java

class Walking
{
void walk()
{
System.out.println("Man walking fastly");
}
}
class OverridingDemo
{
public static void main(String args[])
{
Man obj = new Man();
obj.walk();
}
}

Output

Man walking

Problem is that I have to provide a specific implementation of walk() method in subclass that is why
we use method overriding.

Example of method overriding in Java

In this example, we have defined the walk method in the subclass as defined in the parent class but
it has some specific implementation. The name and parameter of the method is same and there is IS-
A relationship between the classes, so there is method overriding.

Example

class Walking
{
void walk()
{
System.out.println("Man walking fastly");
}
}
class Man extends walking
{
void walk()
{
System.out.println("Man walking slowly");
}}
class OverridingDemo
{
public static void main(String args[])
{
Man obj = new Man();
obj.walk();
}}
Output
Man walking slowly

Note: Whenever we are calling overridden method using derived class object reference the highest
priority is given to current class (derived class). We can see in the above example high priority is
derived class.
Note: super. (super dot) can be used to call base class overridden method in the derived class.

Accessing properties of base class with respect to derived class object

class A
{
int x;
void f1()
{
x=10;
System.out.println(x);
}
void f4()
{
System.out.println("this is f4()");
System.out.println("-----------------");
}
};
class B extends A
{
int y;
void f1()
{
int y=20;
System.out.println(y);
System.out.println("this is f1()");
System.out.println("------------------");
}
};
class C extends A
{
int z;

void f1()
{
z=10;
System.out.println(z);
System.out.println("this is f1()");
}
};
class Overide
{
public static void main(String[] args)
{
A a1=new B();
a1.f1();
a1.f4();
A c1=new C();
c1.f1();
c1.f4();
}
}

Example of Implement overriding concept

class Person
{
String name;
void sleep(String name)
{
this.name=name;
System.out.println(this.name +"is sleeping+8hr/day");
}
void walk()
{
System.out.println("this is walk()");
System.out.println("-----------------");
}
};
class Student extends Person
{
void writExams()
{
System.out.println("only student write the exam");
}
void sleep(String name)
{
super.name=name;
System.out.println(super.name +"is sleeping 6hr/day");
System.out.println("------------------");
}
};
class Developer extends Person
{
public void designProj()
{
System.out.println("Design the project");

}
void sleep(String name)
{
super.name=name;
System.out.println(super.name +"is sleeping 4hr/day");
System.out.println("------------------");
}
};
class OverideDemo
{
public static void main(String[] args)
{
Student s1=new Student();
s1.writExams();
s1.sleep("student");
s1.walk();
Developer d1=new Developer();
d1.designProj();
d1.sleep("developer");
}
}

Difference between Overloading and Overriding

Overloading Overriding

1

Whenever same method or Constructor is
existing multiple times within a class either with
different number of parameter or with different
type of parameter or with different order of
parameter is known as Overloading.

Whenever same method name is existing
multiple time in both base and derived class
with same number of parameter or same type
of parameter or same order of parameters is
known as Overriding.

2
Arguments of method must be different at least
arguments.

Argument of method must be same including
order.

3 Method signature must be different. Method signature must be same.

4
Private, static and final methods can be
overloaded.

Private, static and final methods can not be
override.

5 Access modifiers point of view no restriction.
Access modifiers point of view not reduced
scope of Access modifiers but increased.

6
Also known as compile time polymorphism or
static polymorphism or early binding.

Also known as run time polymorphism or
dynamic polymorphism or late binding.

7
Overloading can be exhibited both are method
and constructor level.

Overriding can be exhibited only at method
label.

8 The scope of overloading is within the class.
The scope of Overriding is base class and
derived class.

9
Overloading can be done at both static and non-
static methods.

Overriding can be done only at non-static
method.

10
For overloading methods return type may or
may not be same.

For overriding method return type should be
same.

Note: In overloading we have to check only methods names (must be same) and arguments types
(must be different) except these the remaining like return type access modifiers etc. are not required
to check
But in overriding every things check like method names arguments types return types access

modifiers etc.

Interface in Java

Interface is similar to class which is collection of public static final variables (constants) and
abstract methods.

The interface is a mechanism to achieve fully abstraction in java. There can be only abstract
methods in the interface. It is used to achieve fully abstraction and multiple inheritance in Java.

Why we use Interface ?

 It is used to achieve fully abstraction.

 By using Interface, you can achieve multiple inheritance in java.

 It can be used to achieve loose coupling.

properties of Interface

 It is implicitly abstract. So we no need to use the abstract keyword when declaring an

interface.

 Each method in an interface is also implicitly abstract, so the abstract keyword is not

needed.

 Methods in an interface are implicitly public.

 All the data members of interface are implicitly public static final.

How interface is similar to class ?

Whenever we compile any Interface program it generate .class file. That means the bytecode of an
interface appears in a .class file.

How interface is different from class ?

 You can not instantiate an interface.

 It does not contain any constructors.

 All methods in an interface are abstract.

 Interface can not contain instance fields. Interface only contains public static final variables.

 Interface is can not extended by a class; it is implemented by a class.

 Interface can extend multiple interfaces. It means interface support multiple inheritance

Behavior of compiler with Interface program

In the above image when we compile any interface program, by default compiler added public static
final before any variable and public abstract before any method. Because Interface is design for
fulfill universal requirements and to achieve fully abstraction.

Declaring Interfaces:

The interface keyword is used to declare an interface.

Example

interface Person
{
 datatype variablename=value;
 //Any number of final, static fields
 returntype methodname(list of parameters or no parameters)
 //Any number of abstract method declarations
}

Explanations

In the above syntax Interface is a keyword interface name can be user defined name the default
signature of variable is public static final and for method is public abstract. JVM will be added
implicitly public static final before data members and public abstract before method.

Example

public static final datatype variable name=value; ----> for data member
public abstract returntype methodname(parameters)---> for method

Implementing Interfaces:

A class uses the implements keyword to implement an interface. The implements keyword appears
in the class declaration following the extends portion of the declaration.

Example

interface Person
{
void run();
}
class Employee implements Person
{
public void run()
{
System.out.println("Run fast");
} }

When we use abstract and when Interface

If we do not know about any things about implementation just we have requirement specification
then we should be go for Interface

If we are talking about implementation but not completely (partially implemented) then we should
be go for abstract

Rules for implementation interface

 A class can implement more than one interface at a time.

 A class can extend only one class, but implement many interfaces.

 An interface can extend another interface, similarly to the way that a class can extend

another class.

Relationship between class and Interface

 Any class can extends another class

 Any Interface can extends another Interface.

 Any class can Implements another Interface

 Any Interface can not extend or Implements any class.

Difference between Abstract class and Interface

Abstract class Interface

1
It is collection of abstract method and
concrete methods.

It is collection of abstract method.

2
There properties can be reused commonly in
a specific application.

There properties commonly usable in any
application of java environment.

3 It does not support multiple inheritance. It support multiple inheritance.

4
Abstract class is preceded by abstract
keyword.

It is preceded by Interface keyword.

5
Which may contain either variable or
constants.

Which should contains only constants.

6
The default access specifier of abstract class
methods are default.

There default access specifier of interface
method are public.

7
These class properties can be reused in other
class using extend keyword.

These properties can be reused in any other class
using implements keyword.

8 Inside abstract class we can take constructor. Inside interface we can not take any constructor.

9
For the abstract class there is no restriction
like initialization of variable at the time of
variable declaration.

For the interface it should be compulsory to
initialization of variable at the time of variable
declaration.

10
There are no any restriction for abstract class
variable.

For the interface variable can not declare
variable as private, protected, transient, volatile.

11
There are no any restriction for abstract class
method modifier that means we can use any
modifiers.

For the interface method can not declare method
as strictfp, protected, static, native, private, final,
synchronized.

Example of Interface

interface Person
{
void run(); // abstract method
}
class A implements Person
{
public void run()
{
System.out.println("Run fast");
}
public static void main(String args[])
 {
 A obj = new A();
 obj.run();
 }
}

Output

Run fast

Multiple Inheritance using interface

Example

interface Developer
{
void disp();
}
interface Manager
{
void show();
}

class Employee implements Developer, Manager
{
public void disp()
{
System.out.println("Hello Good Morning");
}
public void show()
{
System.out.println("How are you ?");
}

public static void main(String args[])
{
Employee obj=new Employee();
obj.disp();
obj.show();
}
}

Output

Hello Good Morning
How are you ?

Marker or tagged interface

An interface that have no member is known as marker or tagged interface. For example:
Serializable, Cloneable, Remote etc. They are used to provide some essential information to the
JVM so that JVM may perform some useful operation.

Example

//Way of writing Serializable interface
public interface Serializable
{
}

Why interface have no constructor ?

Because, constructor are used for eliminate the default values by user defined values, but in case of
interface all the data members are public static final that means all are constant so no need to
eliminate these values.

Other reason because constructor is like a method and it is concrete method and interface does not
have concrete method it have only abstract methods that's why interface have no constructor.

Abstraction in Java

Abstraction is the concept of exposing only the required essential characteristics and behavior with
respect to a context.

Hiding of data is known as data abstraction. In object oriented programming language this is
implemented automatically while writing the code in the form of class and object.

Real Life Example of Abstraction in Java

Abstraction shows only important things to the user and hides the internal details, for example,
when we ride a bike, we only know about how to ride bikes but can not know about how it work?
And also we do not know the internal functionality of a bike.

Another real life example of Abstraction is ATM Machine; All are performing operations on the
ATM machine like cash withdrawal, money transfer, retrieve mini-statement…etc. but we can't
know internal details about ATM.

 Note: Data abstraction can be used to provide security for the data from the unauthorized methods.

Note: In Java language data abstraction can achieve using class.

Example of Abstraction

class Customer
{
int account_no;
float balance_Amt;
String name;
int age;
String address;
void balance_inquiry()
{
/* to perform balance inquiry only account number
is required that means remaining properties
are hidden for balance inquiry method */
}
void fund_Transfer()
{
/* To transfer the fund account number and
balance is required and remaining properties
are hidden for fund transfer method */
}

How to achieve Abstraction ?

There are two ways to achieve abstraction in java

 Abstract class (0 to 100%)

 Interface (Achieve 100% abstraction)

Read more about Interface and Abstract class in the previous section.

Difference between Encapsulation and Abstraction

Encapsulation is not providing full security because we can access private member of the class
using reflection API, but in case of Abstraction we can't access static, abstract data member of a
class.

Encapsulation in Java

Encapsulation is a process of wrapping of data and methods in a single unit is called encapsulation.
Encapsulation is achieved in java language by class concept.

Combining of state and behavior in a single container is known as encapsulation. In java language
encapsulation can be achieve using class keyword, state represents declaration of variables on
attributes and behavior represents operations in terms of method.

Advantage of Encapsulation

The main advantage of using of encapsulation is to secure the data from other methods, when we
make a data private then these data only use within the class, but these data not accessible outside
the class.

Real life example of Encapsulation in Java

The common example of encapsulation is capsule. In capsule all medicine are encapsulated in side
capsule.

Benefits of encapsulation

 Provides abstraction between an object and its clients.

 Protects an object from unwanted access by clients.

 Example: A bank application forbids (restrict) a client to change an Account's balance.

Let's see the Example of Encapsulation in java

Example

class Employee
{
private String name;

public String getName()
{
return name;
}
public void setName(String name){
this.name=name;
}
}

class Demo
{
public static void main(String[] args)
{
Employee e=new Employee();
e.setName("Harry");
System.out.println(e.getName());
}
}

Output

Harry

Polymorphism in Java

The process of representing one form in multiple forms is known as Polymorphism.

Polymorphism is derived from 2 greek words: poly and morphs. The word "poly" means many and
"morphs" means forms. So polymorphism means many forms.

Polymorphism is not a programming concept but it is one of the principal of OOPs. For many

objects oriented programming language polymorphism principle is common but whose
implementations are varying from one objects oriented programming language to another object
oriented programming language.

Real life example of polymorphism

Suppose if you are in class room that time you behave like a student, when you are in market at that
time you behave like a customer, when you at your home at that time you behave like a son or
daughter, Here one person present in different-different behaviors.

How to achieve Polymorphism in Java ?

In java programming the Polymorphism principal is implemented with method overriding concept
of java.

Polymorphism principal is divided into two sub principal they are:

 Static or Compile time polymorphism

 Dynamic or Runtime polymorphism

Note: Java programming does not support static polymorphism because of its limitations and java
always supports dynamic polymorphism.

Let us consider the following diagram

Here original form or original method always resides in base class and multiple forms represents
overridden method which resides in derived classes.

In the above diagram the sum method which is present in BC class is called original form and the
sum() method which are present in DC1 and DC2 are called overridden form hence Sum() method

is originally available in only one form and it is further implemented in multiple forms. Hence
Sum() method is one of the polymorphism method.

Example of Runtime Polymorphism in Java

In below example we create two class Person an Employee, Employee class extends Person class
feature and override walk() method. We are calling the walk() method by the reference variable of
Parent class. Since it refers to the subclass object and subclass method overrides the Parent class
method, subclass method is invoked at runtime. Here method invocation is determined by the JVM
not compiler, So it is known as runtime polymorphism.

Example of Polymorphism in Java

class Person
{
void walk()
{
System.out.println("Can Run....");
}
}
class Employee extends Person
{
void walk()
{
System.out.println("Running Fast...");
}
public static void main(String arg[])
{
Person p=new Employee(); //upcasting
p.walk();
}
}

Output

Running fast...

Dynamic Binding

Dynamic binding always says create an object of base class but do not create the object of derived
classes. Dynamic binding principal is always used for executing polymorphic applications.

The process of binding appropriate versions (overridden method) of derived classes which are
inherited from base class with base class object is known as dynamic binding.

Advantages of dynamic binding along with polymorphism with method overriding are.

 Less memory space and Less execution time

 More performance

Static polymorphism

The process of binding the overloaded method within object at compile time is known as Static
polymorphism due to static polymorphism utilization of resources (main memory space) is poor

because for each and every overloaded method a memory space is created at compile time when it
binds with an object. In C++ environment the above problem can be solve by using dynamic
polymorphism by implementing with virtual and pure virtual function so most of the C++ developer
in real worlds follows only dynamic polymorphism.

Dynamic polymorphism

In dynamic polymorphism method of the program binds with an object at runtime the advantage of
dynamic polymorphism is allocating the memory space for the method (either for overloaded
method or for override method) at run time.

Conclusion

The advantage of dynamic polymorphism is effective utilization of the resources, So Java always
use dynamic polymorphism. Java does not support static polymorphism because of its limitation

Package in Java

A package is a collection of similar types of classes, interfaces and sub-packages.

Purpose of package

The purpose of package concept is to provide common classes and interfaces for any program
separately. In other words if we want to develop any class or interface which is common for most of
the java programs than such common classes and interfaces must be place in a package.

Packages in Java are the way to organize files when a project has many modules. Same like we
organized our files in Computer. For example we store all movies in one folder and songs in other
folder, here also we store same type of files in a particular package for example in awt package have
all classes and interfaces for design GUI components.

Advantage of package

 Package is used to categorize the classes and interfaces so that they can be easily maintained

 Application development time is less, because reuse the code

 Application memory space is less (main memory)

 Application execution time is less

 Application performance is enhance (improve)

 Redundancy (repetition) of code is minimized

 Package provides access protection.

 Package removes naming collision.

Type of package

Package are classified into two type which are given below.

1. Predefined or built-in package
2. User defined package

Predefined or built-in package

These are the package which are already designed by the Sun Microsystem and supply as a part of
java API, every predefined package is collection of predefined classes, interfaces and sub-package.

User defined package

If any package is design by the user is known as user defined package. User defined package are
those which are developed by java programmer and supply as a part of their project to deal with
common requirement.

Rules to create user defined package

 package statement should be the first statement of any package program.

 Choose an appropriate class name or interface name and whose modifier must be public.

 Any package program can contain only one public class or only one public interface but it

can contain any number of normal classes.

 Package program should not contain any main class (that means it should not contain any

main())

 modifier of constructor of the class which is present in the package must be public. (This is

not applicable in case of interface because interface have no constructor.)

 The modifier of method of class or interface which is present in the package must be public

(This rule is optional in case of interface because interface methods by default public)

 Every package program should be save either with public class name or public Interface

name

Compile package programs

For compilation of package program first we save program with public className.java and it
compile using below syntax:

Syntax

javac -d . className.java

Syntax

javac -d path className.java

Explanations: In above syntax "-d" is a specific tool which is tell to java compiler create a
separate folder for the given package in given path. When we give specific path then it create a new
folder at that location and when we use . (dot) then it crate a folder at current working directory.

Note: Any package program can be compile but can not be execute or run. These program can be
executed through user defined program which are importing package program.

Example of package program

Package program which is save with A.java and compile by javac -d . A.java

Example

package mypack;

public class A
{
public void show()
{
System.out.println("Sum method");
} }
Import above class in below program using import packageName.className

Example

import mypack.A;
public class Hello
{
public static void main(String arg[])
{
A a=new A();
a.show();
System.out.println("show() class A");
}}
Explanations: In the above program first we create Package program which is save with A.java and
compiled by "javac -d . A.java". Again we import class "A" in class Hello using "import
mypack.A;" statement.

Difference between Inheritance and package

Inheritance concept always used to reuse the feature within the program between class to class,
interface to interface and interface to class but not accessing the feature across the program.
Package concept is to reuse the feature both within the program and across the programs between
class to class, interface to interface and interface to class.

Difference between package keyword and import keyword
Package keyword is always used for creating the undefined package and placing common classes
and interfaces.
import is a keyword which is used for referring or using the classes and interfaces of a specific
package.

Exception Handling in Java
The process of converting system error messages into user friendly error message is known as
Exception handling. This is one of the powerful feature of Java to handle run time error and
maintain normal flow of java application.
Exception
An Exception is an event, which occurs during the execution of a program, that disrupts the normal
flow of the program's Instructions.
Why use Exception Handling
Handling the exception is nothing but converting system error generated message into user friendly
error message. Whenever an exception occurs in the java application, JVM will create an object of
appropriate exception of sub class and generates system error message, these system generated
messages are not understandable by user so need to convert it into user friendly error message. You
can convert system error message into user friendly error message by using exception handling
feature of java.

For Example: when you divide any number by zero then system generate / by zero so this is not
understandable by user so you can convert this message into user friendly error message like Don't
enter zero for denominator.

Hierarchy of Exception classes

Type of Exception

 Checked Exception

 Un-Checked Exception

Checked Exception

Checked Exception are the exception which checked at compile-time. These exception are directly
sub-class of java.lang.Exception class.

Only for remember: Checked means checked by compiler so checked exception are checked at
compile-time.

Un-Checked Exception

Un-Checked Exception are the exception both identifies or raised at run time. These exception are
directly sub-class of java.lang.RuntimeException class.

Note: In real time application mostly we can handle un-checked exception.

Only for remember: Un-checked means not checked by compiler so un-checked exception are
checked at run-time not compile time.

Difference between checked Exception and un-checked Exception

Checked Exception Un-Checked Exception

1
checked Exception are checked at
compile time

un-checked Exception are checked at run time

3
e.g.
FileNotFoundException,
NumberNotFoundException etc.

e.g.
ArithmeticException, NullPointerException,
ArrayIndexOutOfBoundsException etc.

Difference between Error and Exception

Error Exception
1 Can't be handle. Can be handle.

2
Example:
NoSuchMethodError
OutOfMemoryError

Example:
ClassNotFoundException
NumberFormateException

Handling the Exception

Handling the exception is nothing but converting system error generated message into user friendly
error message in others word whenever an exception occurs in the java application, JVM will create
an object of appropriate exception of sub class and generates system error message, these system
generated messages are not understandable by user so need to convert it into user-friendly error
message. You can convert system error message into user-friendly error message by using exception
handling feature of java.

Use Five keywords for Handling the Exception

 try

 catch

 finally

 throws

 throw

Syntax for handling the exception

Syntax

try
{
 // statements causes problem at run time
}
catch(type of exception-1 object-1)
{
 // statements provides user friendly error message
}
catch(type of exception-2 object-2)
{
 // statements provides user friendly error message
}
finally
{
 // statements which will execute compulsory
}

Example without Exception Handling

Syntax

class ExceptionDemo
{
public static void main(String[] args)
{
int a=10, ans=0;
ans=a/0;
System.out.println("Denominator not be zero");
}
}

Abnormally terminate program and give a message like below, this error message is not
understandable by user so we convert this error message into user friendly error message, like
"denominator not be zero".

Example of Exception Handling

Example

class ExceptionDemo
{
public static void main(String[] args)
{
int a=10, ans=0;
try
{
ans=a/0;
}
catch (Exception e)
{
System.out.println("Denominator not be zero");
}
}
}

Output

Denominator not be zero

try and catch block

try block

Inside try block we write the block of statements which causes executions at run time in other
words try block always contains problematic statements.

Important points about try block

 If any exception occurs in try block then CPU controls comes out to the try block and

executes appropriate catch block.

 After executing appropriate catch block, even through we use run time statement, CPU

control never goes to try block to execute the rest of the statements.

 Each and every try block must be immediately followed by catch block that is no

intermediate statements are allowed between try and catch block.

Syntax

try
{

}
/* Here no other statements are allowed
between try and catch block */
catch()
{

}

 Each and every try block must contains at least one catch block. But it is highly

recommended to write multiple catch blocks for generating multiple user friendly error

messages.

 One try block can contains another try block that is nested or inner try block can be possible.

Syntax

try
{
.......
try
{
.......
}
}

catch block

Inside catch block we write the block of statements which will generates user friendly error
messages.

catch block important points

 Catch block will execute exception occurs in try block.

 You can write multiple catch blocks for generating multiple user friendly error messages to

make your application strong. You can see below example.

 At a time only one catch block will execute out of multiple catch blocks.

 in catch block you declare an object of sub class and it will be internally referenced by JVM.

Example without Exception Handling

Example

class ExceptionDemo
{
public static void main(String[] args)
{
int a=10, ans=0;
ans=a/0;
System.out.println("Denominator not be zero");
}
}

Abnormally terminate program and give a message like below, this error message is not
understandable by user so we convert this error message into user friendly error message, like
"denominator not be zero".

Example of Exception Handling

Example

class ExceptionDemo
{
public static void main(String[] args)
{
int a=10, ans=0;
try
{
ans=a/0;
}
catch (Exception e)
{
System.out.println("Denominator not be zero");
}
}
}

Output

Denominator not be zero

Multiple catch block

You can write multiple catch blocks for generating multiple user friendly error messages to make
your application strong. You can see below example.

Example

import java.util.*;
class ExceptionDemo
{
public static void main(String[] args)
{
int a, b, ans=0;
Scanner s=new Scanner(System.in);
System.out.println("Enter any two numbers: ");
try
{
 a=s.nextInt();
 b=s.nextInt();
 ans=a/b;
 System.out.println("Result: "+ans);
}
catch(ArithmeticException ae)
{
System.out.println("Denominator not be zero");
}
catch(Exception e)
{
System.out.println("Enter valid number");
}
}

}

Output

Enter any two number: 5 0
Denominator not be zero

finally Block in Exception Handling

Inside finallyblock we write the block of statements which will relinquish (released or close or
terminate) the resource (file or database) where data store permanently.

finally block important points

 Finally block will execute compulsory

 Writing finally block is optional.

 You can write finally block for the entire java program

 In some of the circumstances one can also write try and catch block in finally block.

Example

class ExceptionDemo
{
public static void main(String[] args)
{
int a=10, ans=0;
try
{
ans=a/0;
}
catch (Exception e)
{
System.out.println("Denominator not be zero");
}
finally
{
System.out.println("I am from finally block");
}
}
}

Output

Denominator not be zero
I am from finally block

Exception Classes in Java

Exception are mainly classified into two type checked exception and un-checked exception.

Checked Exception Classes

 FileNotFoundException

 ClassNotFoundException

 IOException

 InterruptedException

Un-Checked Exception Classes

 ArithmeticException

 ArrayIndexOutOfBoundsException

 StringIndexOutOfBoundsException

 NumberFormateException

 NullPointerException

 NoSuchMethodException

 NoSuchFieldException

FileNotFoundException

If the given filename is not available in a specific location (in file handling concept) then
FileNotFoundException will be raised. This exception will be thrown by the FileInputStream,
FileOutputStream, and RandomAccessFile constructors.

ClassNotFoundException

If the given class name is not existing at the time of compilation or running of program then
ClassNotFoundException will be raised. In other words this exception is occured when an
application tries to load a class but no definition for the specified class name could be found.

IOException

This is exception is raised whenever problem occurred while writing and reading the data in the file.
This exception is occurred due to following reason;

 When try to transfer more data but less data are present.

 When try to read data which is corrupted.

 When try to write on file but file is read only.

InterruptedException

This exception is raised whenever one thread is disturb the other thread. In other words this
exception is thrown when a thread is waiting, sleeping, or otherwise occupied, and the thread is
interrupted, either before or during the activity.

ArithmeticException

This exception is raised because of problem in arithmetic operation like divide by zero. In other
words this exception is thrown when an exceptional arithmetic condition has occurred. For
example, an integer "divide by zero".

Example

class ExceptionDemo
{
public static void main(String[] args)
{
int a=10, ans=0;
try
{

ans=a/0;
}
catch (Exception e)
{
System.out.println("Denominator not be zero");
}
}
}

ArrayIndexOutOfBoundsException

This exception will be raised whenever given index value of an array is out of range. The index is
either negative or greater than or equal to the size of the array.

Example

int a[]=new int[5];
a[10]=100; //ArrayIndexOutOfBoundsException

StringIndexOutOfBoundsException

This exception will be raised whenever given index value of string is out of range. The index is
either negative or greater than or equal to the size of the array.

Example

String s="Hello";
s.charAt(3);
s.charAt(10); // Exception raised

chatAt() is a predefined method of string class used to get the individual characters based on index
value.

NumberFormateException

This exception will be raised whenever you trying to store any input value in the un-authorized
datatype.

Example: Storing string value into int datatype.

Example

int a;
a="Hello";

Example

String s="hello";
int i=Integer.parseInt(s);//NumberFormatException

NoSuchMethodException

This exception will be raised whenever calling method is not existing in the program.

NullPointerException

A NullPointerException is thrown when an application is trying to use or access an object whose
reference equals to null.

Example

String s=null;
System.out.println(s.length());//NullPointerException

StackOverFlowException

This exception throw when full the stack because the recursion method are stored in stack area.

Difference Between Throw and Throws Keyword

throw

throw is a keyword in java language which is used to throw any user defined exception to the same
signature of method in which the exception is raised.

Note: throw keyword always should exist within method body.

whenever method body contain throw keyword than the call method should be followed by throws
keyword.

Syntax

class className
{
returntype method(...) throws Exception_class
{
throw(Exception obj)
}}

throws

throws is a keyword in java language which is used to throw the exception which is raised in the
called method to it's calling method throws keyword always followed by method signature.

Example

returnType methodName(parameter)throws Exception_class....
{
.....
}

Difference between throw and throws

throw throws

1
throw is a keyword used for hitting and
generating the exception which are
occurring as a part of method body

throws is a keyword which gives an indication to the
specific method to place the common exception
methods as a part of try and catch block for
generating user friendly error messages

2
The place of using throw keyword is
always as a part of method body.

The place of using throws is a keyword is always as
a part of method heading

3

When we use throw keyword as a part of
method body, it is mandatory to the java
programmer to write throws keyword as a
part of method heading

When we write throws keyword as a part of method
heading, it is optional to the java programmer to
write throw keyword as a part of method body.

Example of throw and throws

Example

// save by DivZero.java

package pack;

public class DivZero
{
public void division(int a, int b)throws ArithmeticException
{
if(b==0)
{
ArithmeticException ae=new ArithmeticException("Does not enter zero for Denominator");
throw ae;
}
else
{
int c=a/b;
System.out.println("Result: "+c);
}
}
}

Compile: javac -d . DivZero.java

Example

// save by ArthException.java

import pack.DivZero;
import java.util.*;

class ArthException
{
public static void main(String args[])
{
System.out.println("Enter any two number: ");
Scanner s=new Scanner(System.in);
try
{
int a=s.nextInt();
int b=s.nextInt();
DivZero dz=new DivZero();
dz.division(a, b);
}
catch(Exception e)
{
System.err.println(e);
}
}
}

Compile: javac ArthException.java

Steps to Compile and Run code

First you save throw-example files into you PC in any where, here i will save this file in C:\>

 C:\throw-example\>javac -d . DivZero.java

 C:\throw-example\>javac ArthException.java

Note: First compile DivZero.java code then compile ArthException.java code.

Custom Exception in Java(user defined Exception)

If any exception is design by the user known as user defined or Custom Exception. Custom
Exception is created by user.

Rules to design user defined Exception

1. Create a package with valid user defined name.
2. Create any user defined class.
3. Make that user defined class as derived class of Exception or RuntimeException class.
4. Declare parametrized constructor with string variable.
5. call super class constructor by passing string variable within the derived class constructor.
6. Save the program with public class name.java

Example

// save by AgeException.java
package nage;

public class AgeException extends Exception
{
public AgeException(String s)
{
super(s);
}
}

Compile: javac -d . AgeException.java

Example

// save by CheckAge.java
package nage;

public class CheckAge
{
public void verify(int age)throws AgeException
{
if (age>0)
{
System.err.print("valid age");
}
else
{
AgeException ae=new AgeException("Invalid age");

throw(ae);
}
}
}

Compile: javac -d . CheckAge.java

Example

// save by VerifyAgeException

import nage.AgeException;
import nage.CheckAge;
import java.util.*;

public class VerifyAgeException
{
public static void main(String args[])
{
int a;
System.out.println("Enter your age");
Scanner s=new Scanner(System.in);
a=s.nextInt();
try
{
CheckAge ca=new CheckAge();
ca.verify(a);
}
catch(AgeException ae)
{
System.err.println("Age should not be -ve");
}
catch(Exception e)
{
System.err.println(e);
}
}
}

Compile: javac VerifyAgeException.java

Steps to compile and run above program

First you save verify-age files into you PC in any where, here i will save this file in C:\>

 C:\verify-age\>javac -d . AgeException.java

 C:\verify-age\>javac -d . CheckAge.java

 C:\verify-age\>javac VerifyAgeException.java

Note: First compile AgeException.java code then CheckAge.java and at last compile
VerifyAgeException.java code.

Multithreading in Java

Multithreading in java is a process of executing multiple threads simultaneously. The aim of
multithreading is to achieve the concurrent execution.

Thread

Thread is a lightweight components and it is a flow of control. In other words a flow of control is
known as thread.

State or Life cycle of thread

State of a thread are classified into five types they are

1. New State
2. Ready State
3. Running State
4. Waiting State
5. Halted or dead State

New State

If any new thread class is created that represent new state of a thread, In new state thread is created
and about to enter into main memory. No memory is available if the thread is in new state.

Ready State

In ready state thread will be entered into main memory, memory space is allocated for the thread
and 1st time waiting for the CPU.

Running State

Whenever the thread is under execution known as running state.

Halted or dead State

If the thread execution is stoped permanently than it comes under dead state, no memory is
available for the thread if its comes to dead state.

Note: If the thread is in new or dead state no memory is available but sufficient memory is available
if that is in ready or running or waiting state.

Achieve multithreading in java

In java language multithreading can be achieve in two different ways.

1. Using thread class
2. Using Runnable interface

Using thread class

In java language multithreading program can be created by following below rules.

1. Create any user defined class and make that one as a derived class of thread class.

class Class_Name extends Thread
{
........
}

2. Override run() method of Thread class (It contains the logic of perform any operation)
3. Create an object for user-defined thread class and attached that object to predefined thread

class object. Class_Name obj=new Class_Name Thread t=new Thread(obj);
4. Call start() method of thread class to execute run() method.
5. Save the program with filename.java

Example of multithreading using Thread class

Thread based program for displaying 1 to 10 numbers after each and every second.

// Threaddemo2.java

class Th1 extends Thread
{
public void run()
{
try
{

for(int i=1;i< =10;i++)
{
System.out.println("value of i="+i);
Thread.sleep(1000);
}
}
catch(InterruptedException ie)
{
System.err.println("Problem in thread execution");
}
}
}
class Threaddemo2
{
public static void main(String args[])
{
Th1 t1=new Th1();
System.out.println("Execution status of t1 before start="+t1.isAlive());
t1.start();
System.out.println("Execution status of t1 before start="+t1.isAlive());
try
{
Thread.sleep(5000);
}
catch(InterruptedException ie)
{
System.out.println("Problem in thread execution");
}
System.out.println("Execution status of t1 during execution="+t1.isAlive());
try
{
Thread.sleep(5001);
}
catch(InterruptedException ie)
{
System.out.println("problem in thread execution");
}
System.out.println("Execution status of t1 after completation="+t1.isAlive());
}
}

Output
Execution status of t1 before start=false //new state
Execution status of t1 after start=true //ready state
1
2
3
4
5
6
Execution status of t1 during execution=true //running state
7
8

9
10
Execution status of t1 after completation=false //halted state

Thread class properties

Thread class contains constant data members, constructors, predefined methods.

Constant data members

 MAX-PRIORITY

 MIN-PRIORITY

 NORM-PRIORITY

MAX-PRIORITY

Which represent the minimum priority that a thread can have whose values is 10.

Syntax:
public static final int MAX-PRIORITY=10

MIN-PRIORITY

Which represents the minimum priority that a thread can have.

Syntax:
public static final int MIN-PRIORITY=0

NORM-PRIORITY

Which represent the default priority that is assigned to a thread.

Syntax:
public static final int NORM-PRIORITY=5

Constructors of Thread class

 Thread()

 Thread(String name)

 Thread(object)

 Thread(object, String name)

Thread()

Which will be execute to set the predefined name for newly created thread, these names are
generally in the form of thread -0, thread -1,
Syntax to call constructor:

Syntax

Thread t=new Thread();

Thread(String name)

Which can be used to provide user defined name for newly created thread.

Syntax

Thread t=new Thread("newthread");

Thread(object)

Which can be used to provide default name for newly created user defined thread.

Syntax

UserdefinedThreadclass obj=new UserdefinedThreadclass();
Thread t=new Thread("obj");

object, String name

Which will be used to provide user defined name for the newly created user defined thread.

Syntax

UserdefinedThreadclass obj=new UserdefinedThreadclass();
Thread t=new Thread(object, "secondthread");

Methods of Thread class

 getPriority()

 setPriority()

 getName()

 setName()

 isDeamon()

 run()

 start()

 sleep()

 suspend()

 resume()

 stop()

 isAlive()

 currentThread()

 join()

 getState()

 yield()

getPriority()

This method is used to get the current priority of thread.

Thread t=new Thread();
int x=t.getPriority();
System.out.println(x);

setPriority()

This method is used to set the current priority of thread.

Thread t=new Thread();

t.setPriority(any priority number between o to 10)
or
t.setPriority(Thread.MAX-PRIORITY)

getName()

This method is used to get the current executing thread name.

Thread t=new Thread();
String s=t.getName();
System.out.println(s);

setName()

This method is used to set the userdefined name for the thread.

Thread t=new Thread();
t.setName("mythread");

isDeamon()

Which returns true if the current thread is background thread otherwise return false.

Thread t=new Thread();
boolean b=t.isDeamon();

run()

Which contains the main business logic that can be executed by multiple threads simultaneously in
every user defined thread class run method should be overridden.

public Class_Name extends Thread
{
public void run()
{
.....
.....
}
}

start()

Used to convert ready state thread to running state.

Thread t=new Thread();
t.start();

sleep()

Used to change running state thread to ready state based on time period it is a static method should
be called with class reference.

public static final sleep(long milisecond)throws InterruptedException
{
try
{
Thread.sleep(3000);
}

catch(InterruptedException ie)
{
........
........
}
}

Once the given time period is completed thread state automatically change from waiting to running
state.

suspend()

Used to convert running state thread to waiting state, which will never come back to running state
automatically.

Thread t=new Thread();
t.suspend();

resume()

Used to change the suspended thread state(waiting state) to ready state.

Thread t=new Thread();
t.resume();

Note: Without using suspend() method resume() method can not be use.

What is the difference between sleep() and suspend()

Sleep() can be used to convert running state to waiting state and automatically thread convert from
waiting state to running state once the given time period is completed. Where as suspend() can be
used to convert running state thread to waiting state but it will never return back to running state
automatically.

stop()

This method is used to convert running state thread to dead state.

Thread t=new Thread();
t.stop();

isAlive()

Which is return true if the thread is in ready or running or waiting state and return false if the thread
is in new or dead state.

Thread t=new Thread();
t.isAlive();

currentThread()

Used to get the current thread detail like thread name thread group name and priority

Thread t=new Thread();
t.currentThread();

Note:

 The default thread name is thread-0, (if it is a main thread default name is main)

 The default thread group name is main

 Default thread priority is "5" is normal priority.

join()

Which can be used to combined more than one thread into a single group signature is public final
void join()throws InterruptedException

try
{
t.join();
t2.join();
.....
.....
}

getState()

This method is used to get the current state of thread.

Thread t=new Thread();
t.getState();

yield()

Which will keep the currently executing thread into temporarily pass and allows other threads to
execute

Using Runnable Interface

Runnable is one of the predefined interface in java.lang package, which is containing only one
method and whose prototype is " Public abstract void run "

The run() method of thread class defined with null body and run() method of Runnable interface
belongs to abstract. Industry is highly recommended to override abstract run() method of Runnable
interface but not recommended to override null body run() method of thread class.

In some of the circumstance if one derived class is extending some type of predefined class along
with thread class which is not possible because java programming never supports multiple
inheritance. To avoid this multiple inheritance problem, rather than extending thread class we
implement Runnable interface.

Rules to create the thread using Runnable interface

 Create any user defined class and implements runnable interface within that

 Override run() method within the user defined class.

 call start() method to execute run() method of thread class

 Save the program with classname.java

class Class_Name implement Runnable
{
public void run()
{

........
}
}
Class_Name obj=new Class_name();
Thread t=new Thread();
t.start();

Note: While implementing runnable interface it is very mandatory to attach user defined thread
class object reference to predefined thread class object reference. It is optional while creating thread
by extending Thread class.

Thread Synchronization

Whenever multiple threads are trying to use same resource than they may be chance to of getting
wrong output, to overcome this problem thread synchronization can be used.

Definition: Allowing only one thread at a time to utilized the same resource out of multiple threads
is known as thread synchronization or thread safe.

In java language thread synchronization can be achieve in two different ways.

1. Synchronized block
2. Synchronized method

Note: synchronization is a keyword(access modifier in java)

Synchronized block

Whenever we want to execute one or more than one statement by a single thread at a time(not
allowing other thread until thread one execution is completed) than those statement should be
placed in side synchronized block.

class Class_Name implement Runnable or extends Thread
{
public void run()
{
synchronized(this)
{
.......
.......
}
}
}

Synchronized method

Whenever we want to allow only one thread at a time among multiple thread for execution of a
method than that should be declared as synchronized method.

class Class_Name implement Runnable or extends Thread
{
public void run()
{
synchronized void fun()
{

.......

.......
}
public void run()
{
fun();
....
}
}

Interthread Communication

The process of execution of exchanging of the data / information between multiple threads is known
as Interthread communication or if an output of first thread giving as an input to second thread the
output of second thread giving as an input to third thread then the communication between first
second and third thread known as Interthread communication.

In order to develop Interthread communication application we use some of the methods of
java.lang.Object class and these methods are known as Interthread communication methods.

Interthread communication methods

1. public final void wait(long msec)
2. public final void wait()
3. public final void notify()
4. public final void notifyAll()

public final void wait(long msec)

public final void wait (long msec) is used for making the thread to wait by specifying the waiting
time in terms of milliseconds. Once the waiting time is completed, automatically the thread will be
interred into ready state from waiting state. This methods is not recommended to used to make next
thread to wait on the basis of time because java programmer may not be able to decide or determine
the CPU burst time of current thread and CPU burst time is decided by OS but not by the
programmer.

public final void wait()

public final void wait() is used for making the thread to wait without specifying any waiting time
this method is recommended to use to make the next thread to wait until current thread complete its
execution.

public final void notify()

public final void notify() is used for transferring one thread at a time from waiting state to ready
state.

public final void notifyAll()

public final void notifyAll() is used for transferring all the threads at a time from waiting state to
ready state.

Note: public final void wait (long msec) and public final void wait() throws a predefined Exception
called java.lang.InterruptedException.

StringTokenizer in Java
It is a pre defined class in java.util package can be used to split the given string into tokens (parts)
based on delimiters (any special symbols or spaces).

Suppose that we have any string like "Features of Java_Language" when we use stringTokenizer
this string is split into tokens whenever spaces and special symbols present. After split string are :

Example

Features
of
Java
Language

Methods of StringTokenizer

 hasMoreTokens()

 nextToken()

hasMoreTokens()

It is predefined method of StringTokenizer class used to check whether given StringTokenizer
having any elements or not.

nextToken()

Which can be used to get the element from the StringTokenizer.

Example of StringTokenizer:

import java.util.*;
class Stringtokenizerdemo
{
public static void main(String args[])
{
String str="He is a gentle man";
StringTokenizer st=new StringTokenizer(str," ");
System.out.println("The tokens are: ");
while(st.hasMoreTokens())
{
String one=st.nextToken();
System.out.println(one);
}
}}

Output

The tokens are:
He
is
a
gentle
man

Java Scanner Class in Java
Scanner is one of the predefined class which is used for reading the data dynamically from the
keyboard.

Import Scanner class using import java.util.Scanner

Constructor of Scanner Class is Scanner(InputStream)

This constructor create an object of Scanner class by talking an object of InputStream class. An
object of InputStream class is called in which is created as a static data member in the System class.

Syntax of Scanner Class in Java

Scanner sc=new Scanner(System.in);Here the object 'in' is use the control of keyboard

Instance methods of Scanner Class

Method Description
1 public byte nextByte() Used for read byte value
2 public short nextShort() Used for read short value
3 public int nextInt() Used for read integer value
4 public long nextLong() Used for read numeric value
5 public float nextLong() Used for read numeric value
6 public double nextDouble() Used for read double value
7 public char nextChar() Used for read character
8 public boolean nextBoolean() Used for read boolean value
9 public String nextLine() Used for reading any kind of data in the form of String data.
Method 1 to 8 are used for reading fundamental values from the keyboard. Method 9 (public String
nextLine()) is used for reading any kind of data in the form of String data.

For Remember all above methods

From method 1 to 8 combindly we represent as public xxx nextxxx(). Here xxx represents any
fundamental data type. These methods are used for reading the fundamental data from keyboard.

Accept two values dynamically from the keyboard and compute sum.

Example of Scanner Class in Java

import java.util.Scanner
public class ScannerDemo
{
public static void main(String args[])
{
Scanner s=new Scanner(System.in);
System.out.println("Enter first no= ");
int num1=s.nextInt();
System.out.println("Enter second no= ");
int num2=s.nextInt();
System.out.println("Sum of no is= "+(num1+num2));
}
}

Output

Enter first no=4
Enter second no=5
Sum of no is=9

Program which is accept two number as a string and compute their sum.

Example

import java.util.Scanner;
class Dataread
{
public static void main(String[] args)
{
Scanner s=new Scanner(System.in);
System.out.println("Enter first number: ");

String s1=s.nextLine();
System.out.println("Enter second number: ");
String s2=s.nextLine();
int res=Integer.parseInt(s1) + Integer.parseInt(s2);
System.out.println("Sum= "+res);
}
}

Output

Enter first number: 5
Enter second number: 6
Sum= 11

Applet in Java

Applet is a predefined class in java.applet package used to design distributed application. It is a
client side technology. Applets are run on web browser.

Advantage of Applet

 Applets are supported by most web browsers.

 Applets works on client side so less response time.

 Secured: No access to the local machine and can only access the server it came from.

 Easy to develop applet, just extends applet class.

 To run applets, it requires the Java plug-in at client side.

 Android, do not run Java applets.

 Some applets require a specific JRE. If it required new JRE then it take more time to

download new JRE.

Life cycle of applet

 init()

 start()

 stop

 destroy

init(): Which will be executed whenever an applet program start loading, it contains the logic to

initiate the applet properties.

start(): It will be executed whenever the applet program starts running.

stop(): Which will be executed whenever the applet window or browser is minimized.

destroy(): It will be executed whenever the applet window or browser is going to be closed (at the
time of destroying the applet program permanently).

Design applet program

We can design our own applet program by extending applet class in the user defined class.

Syntax

class className extends Applet
{
......
// override lifecycle methods
......
}

Note: Whenever an applet program is running inti() and start() will be executed one after another,
but stop() and destroy() will be executed if the browser is minimized and closed by the end user,
respectively.

Note: Applet program may or may not contain life cycle methods.

Running of applet programs

Applet program can run in two ways.

 Using html (in the web browser)

 Using appletviewer tool (in applet window)

Running of applet using html

In general no Java program can directly execute on the web browser except markup language like
html, xml etc.

Html support a predefined tag called <applet> to load the applet program on the browser window.

Syntax

<applet code="udc.class">
height="100px"
width="100px"
</applet>

Example of applet program to run applet using html

Java code, JavaApp.java

import java.applet.*;
import java.awt.*;
public class JavaApp extends Applet
{
public void paint(Graphics g)

{
Font f=new Font("Arial",Font.BOLD,30);
g.setFont(f);
setForeground(Color.red);
setBackground(Color.white);
g.drawString("Student",200,200);
}
}

Html code, myapplet.html

<html>
<title> AppletEx</Title>
<body>
<applet code="JavaApp.class"
 height="70%"
 width="80%">
</applet>
</body>
</html>

If applet code not run on browser then allow blocked contents.

Running of applet using appletviewer

Some browser does not support <applet> tag so that Sun MicroSystem was introduced a special
tool called appletviewer to run the applet program.

In this Scenario Java program should contain <applet> tag in the commented lines so that
appletviewer tools can run the current applet program.

Example of Applet

import java.applet.*;
import java.awt.*;

/*<applet code="LifeApp.class" height="500",width="800">
</applet>*/

public class LifeApp extends Applet

{
 String s= " ";
 public void init()
 {
 s=s+ " int ";
 }
 public void start()
 {
 s=s+ "start ";
 }
 public void stop()
 {
 s=s+ "stop ";
 }
 public void destroy()
 {
 s=s+ " destory ";
 }
 public void paint(Graphics g)
 {
 Font f=new Font("Arial",Font.BOLD,30);
 setBackgroundColor(Color."red");
 g.setFont(f);
 g.drawString(s,200,250);
 }
}

Execution of applet program

$ javac LifeApp.java
$ appletviewer LifeApp.java

Note: init() always execute only once at the time of loading applet window and also it will be
executed if the applet is restarted.

	Java Notes
	Overview of Java
	Java divided into three categories, they are

	J2SE
	J2EE
	J2ME
	All versions of java
	Java Version SE 7
	Java Version SE 6
	J2SE Version 1.4
	J2SE Version 1.3
	JDK Version 1.1
	JDK Version 1.0

	Basic Points of Java
	Define byte

	Define JRE
	Define JVM
	Garbage Collector
	Define an API
	Definition of JIT
	Network based application
	Centralized applications
	Distributed applications
	OOP's Concept(principles) in Java
	Object--Object is the physical as well as logical entity where as class is the only logical entity.
	Class--Class is a blue print which is containing only list of variables and method and no memory is allocated for them. A class is a group of objects that has common properties.
	Encapsulation--is a process of wrapping of data and methods in a single unit is called encapsulation. Encapsulation is achieved in C++ language by class concept. The main advantage of using of encapsulation is to secure the data from other methods, when we make a data private then these data only use within the class, but these data not accessible outside the class.
	Abstraction---is the concept of exposing only the required essential characteristics and behavior with respect to a context.
	Inheritance--- The process of obtaining the data members and methods from one class to another class is known as inheritance. It is one of the fundamental features of object-oriented programming.
	Polymorphism --The process of representing one Form in multiple forms is known as Polymorphism. Here one form represent original form or original method always resides in base class and multiple forms represents overridden method which resides in derived classes.

	Features of Java
	1. Simple
	2. Platform Independent
	3. Architectural Neutral
	4. Portable
	5. Multithreaded
	6. Distributed
	7. Networked
	8. Robust
	9. Dynamic
	10. Secure
	11. High performance
	12. Interpreted

	13. Object Oriented
	First Java Program
	Requirements for java Program
	Steps For compiling and executing the java program
	Create First program

	Example
	Compile and Execute Java Code
	Output
	Save Java Program
	Compile Java Program
	During the program execution internally following steps will be occurs.

	Compile and Run Java Program
	Steps For compile Java Program
	Steps For Run Java Program
	Steps For compiling and executing the java program
	Difference between JDK, JVM and JRE
	JVM
	JRE
	JDK
	JVM Architecture in Java
	Operation of JVM
	Class loader subsystem:
	Heap area:
	Method area
	Java Stack
	Pc Register
	Native Stack

	Execution Engine
	What is JIT and Why use JIT

	Object and class in Java
	Real life example of object and class

	Syntax to declare a Class
	Simple Example of Object and Class
	Example
	Output
	Data Type in Java
	Primitive data types
	Example
	Derived data types
	Example
	User defined data types
	Example
	Integer category data types
	Character category data types

	Why Java take 2 byte of memory for store character ?
	Float category data types
	Boolean category data types
	Why Boolean data types take zero byte of memory ?

	Variable Declaration Rules in Java
	Syntax
	Rules to declare a Variable
	Example of Variable Declaration
	Output
	Variable declarations
	In which sufficient memory will be allocated and holds default values.
	Syntax
	
	Variable initialization
	Variable assignment
	Syntax
	Syntax
	Operators in Java
	Arithmetic Operators
	Relational Operators
	Logical Operator
	Truth table of Logical Operator
	Assignment operators
	Ternary operator
	Structure of Java Program
	Main() Method in Java
	Syntax
	Public
	Static
	Void
	String args[]
	In case of main() method following changes are acceptable

	Syntax
	Syntax
	Syntax
	We can overload main() method ?
	Example of override main() method

	Example
	Output
	Command Line Arguments in Java
	Syntax for Compile and Run CMD programs
	Program Command Line Argument in Java
	Compile and Run above programs
	Output
	Example of command-line argument in java
	Compile and Run above programs
	Output
	Accept command line arguments and display their values
	Square of Number by reading value from command prompt.
	System.out.println() in Java
	Syntax
	Example
	Example
	Example
	Output
	Decision Making Statement in Java
	if-then Statement
	Syntax
	Example if statement
	Output
	if-else statement
	Syntax
	Example if else
	Output
	Switch Statement
	Syntax
	Rules for apply switch statement

	Limitations of switch statement
	Example
	Example of switch case
	Output
	Looping Statement in Java
	Why use loop ?
	Advantage with looping statement
	Difference between conditional and looping statement

	While loop
	Syntax
	Example while loop
	for loop--is a statement which allows code to be repeatedly executed. For loop contains 3 parts Initialization, Condition and Increment or Decrements
	Syntax
	Flow Diagram

	Control flow of for loop
	Display any message exactly 5 times.

	Example of for loop
	Output
	do-while
	When use do..while loop

	Syntax
	Example do..while loop
	Output
	Example do..while loop
	Output
	Wrapper classes in java
	Why use wrapper classes ?

	Example of wrapper class
	Output
	Converting String data into fundamental or numerical
	Example
	Fundamental data type and corresponding wrapper classes
	How to use wrapper class methods
	Naming Conversion of Java
	Why Using naming Conversion
	Example
	Example
	Example
	Example
	Example
	CamelCase in java naming conventions
	Import statements in Java
	Syntax
	Syntax
	Access Modifiers in Java
	Rules for access modifiers:
	Example
	Example
	Output
	Example
	Output
	Example
	Output
	Array in java
	Advantage of Array
	Disadvantage of Array
	Types of Array
	Array Declaration
	Syntax
	Syntax
	Array creation
	Syntax
	Accessing array elements
	Syntax
	Access Array Elements
	Example of Array
	Output
	Difference Between Length and Length() in Java
	Example
	Example
	Final keyword in java
	Final at variable level
	Final Keyword in java Example
	Final at method level
	Example
	Example of final keyword at method level

	Example
	Output
	Final at class level
	Example
	Example of final keyword at class level

	Example
	Output
	This keyword in java
	Usage of this keyword
	Why use this keyword in java ?

	this . (this dot)
	Syntax
	Example without using this keyword
	Output
	Example of this keyword in java
	Output
	Difference between this and super keyword

	Example when no need of this keyword
	Output
	this ()
	Syntax
	this keyword used to invoke current class method (implicitly)

	Example of this keyword
	output: You got A+
	Rules to use this()---this() always should be the first statement of the constructor. One constructor can call only other single constructor at a time by using this().
	Super keyword in java
	Need of super keyword:
	Syntax
	Super at variable level:
	Syntax
	Program without using super keyword
	Example
	Output
	Program using super keyword al variable level
	Example
	Output
	Super at method level
	Example of super keyword at method level

	Example
	Output
	Program where super is not required

	Example
	Output
	Super at constructor level
	Super()
	Super keyword used to call base class constructor

	Syntax
	Output
	Super(...)
	Important rules
	Rule 1--- Whenever the derived class constructor want to call default constructor of base class, in the context of derived class constructors we write super(). Which is optional to write because every base class constructor contains single form of default constructor?
	Rule 2 ---Whenever the derived class constructor wants to call parameterized constructor of base class in the context of derived class constructor we must write super(...). which is mandatory to write because a base class may contain multiple forms of parameterized constructors.
	Synchronized Keyword in Java
	Advantage of Synchronized
	Dis-Advantage of Synchronized
	Volatile Keyword in Java
	Advantage of Volatile
	Dis-Advantage of Volatile
	Static Block in Java
	Syntax
	Example of Static Block
	Output
	Run java program without main method
	Output
	More than one static block in a program
	Output
	Why a static block executes before the main method ?

	Inner Classes in Java Programming
	Syntax
	The main purpose of using inner class
	Syntax
	Rules to access properties of inner classes
	Example
	Output
	Accessing inner class properties in the external class
	Syntax
	Syntax
	Example
	Abstract class in Java
	Concrete class in Java
	Example
	Create an object
	Abstract class in Java
	Syntax
	Example
	Example
	Make class as abstract class
	Example
	Abstract method
	Syntax
	Example
	Example of abstract class
	Output
	Create an Object of abstract class
	Example
	Important Points about abstract class
	Advantage of abstract class
	Why abstract class have no abstract static method ?
	Abstract base class
	Abstract derived class
	Example of abstract class having method body
	Output
	Example of abstract class having constructor, data member, methods
	Output
	Difference Between Abstract class and Concrete class

	Static and non-static variable in Java
	Difference Between Static and non-Static Variable in Java
	Static variable in Java
	Non-static variable in Java

	Difference between non-static and static variable
	Example
	Syntax
	Syntax
	Example of static and non-static variable.

	Example
	Output
	Understand static and non-static variable using counter
	Program of counter without static variable

	Example
	Output
	Program of counter by static variable

	Example
	Output

	Static and non-Static Method in java
	Difference between Static and non-static method in Java
	Difference between non-static and static Method
	Example
	Output
	Program to accessing static and non-static properties.
	Example
	Constructor in Java
	Syntax
	Advantages of constructors in Java

	How Constructor eliminate default values ?
	Constructor Example in Java
	Output
	Rules or properties of a constructor
	Difference between Method and Constructor
	Types of constructors
	Default Constructor
	Syntax of Default Constructor
	Example of default constructor.

	Example
	Output
	Rule-1:

	Purpose of default constructor?
	Example of default constructor that displays the default values
	Output
	parameterized constructor
	Syntax
	Syntax to call parametrized constructor
	Example of Parametrized Constructor
	Important points Related to Parameterized Constructor
	Example of default constructor, parameterized constructor and overloaded constructor

	Example
	Constructor Overloading
	Syntax
	Why overriding is not possible at constructor level.

	Relationship in Java
	Is-A relationship
	Example of Is-A Relation

	Example
	Output
	Has-A relationship
	Example of Has-A Relation

	Example
	Output
	Uses-A relationship
	Example of Uses-A Relation

	Example
	Output
	Inheritance in Java
	Important points
	Why use Inheritance ?
	Syntax of Inheritance
	Real Life Example of Inheritance in Java
	Advantage of inheritance

	Tpyes of Inheritance
	Single inheritance

	Example of Single Inheritance
	Output
	Multilevel inheritances in Java
	Intermediate base classes

	Example of Multilevel Inheritance
	Output
	Multiple inheritance
	Hybrid inheritance
	Inheriting the feature from base class to derived class

	Syntax
	Explanation

	Important Points for Inheritance:
	Example of Inheritance
	Output
	Why multiple inheritance is not supported in java?

	Example
	Difference between Java Inheritance and C++ Inheritance

	Method Overloading in Java
	Why use method Overloading in Java ?

	Syntax
	Different ways to overload the method
	By changing number of arguments
	Example Method Overloading in Java
	Output
	By changing the data type
	Example Method Overloading in Java
	Output
	Why Method Overloading is not possible by changing the return type of method?

	Example of Method Overloading
	Explanation of Code

	Example
	Can we overload main() method ?
	Example of override main() method

	Example
	Output
	Method Overriding in Java
	Advantage of Java Method Overriding
	Rules for Method Overriding
	Understanding the problem without method overriding
	Example Method Overriding in Java
	Output
	Example of method overriding in Java
	Example
	Output
	Accessing properties of base class with respect to derived class object
	Example of Implement overriding concept
	Difference between Overloading and Overriding
	Interface in Java
	Why we use Interface ?
	properties of Interface
	How interface is similar to class ?
	How interface is different from class ?
	Behavior of compiler with Interface program
	Declaring Interfaces:
	Example
	Explanations
	Example
	Implementing Interfaces:
	Example
	When we use abstract and when Interface
	Rules for implementation interface
	Relationship between class and Interface
	Difference between Abstract class and Interface
	Example of Interface
	Output
	Multiple Inheritance using interface
	Example
	Output
	Marker or tagged interface
	Example
	Why interface have no constructor ?
	Abstraction in Java
	Real Life Example of Abstraction in Java

	Example of Abstraction
	How to achieve Abstraction ?
	Difference between Encapsulation and Abstraction
	Encapsulation in Java
	Advantage of Encapsulation
	Real life example of Encapsulation in Java

	Benefits of encapsulation
	Let's see the Example of Encapsulation in java
	Example
	Output
	Polymorphism in Java
	Real life example of polymorphism

	How to achieve Polymorphism in Java ?
	Let us consider the following diagram

	Example of Runtime Polymorphism in Java
	Example of Polymorphism in Java
	Output
	Dynamic Binding
	Static polymorphism
	Dynamic polymorphism
	Conclusion

	Package in Java
	Purpose of package
	Advantage of package
	Type of package
	Predefined or built-in package
	User defined package
	Rules to create user defined package
	Compile package programs
	Syntax
	Syntax
	Example of package program
	Example
	Example
	Difference between Inheritance and package
	Difference between package keyword and import keyword
	Exception Handling in Java
	Exception
	Why use Exception Handling
	Hierarchy of Exception classes
	Type of Exception
	Checked Exception
	Un-Checked Exception
	Difference between checked Exception and un-checked Exception

	Difference between Error and Exception
	Handling the Exception
	Use Five keywords for Handling the Exception

	Syntax
	Example without Exception Handling
	Syntax
	Example of Exception Handling
	Example
	Output
	try and catch block
	try block
	Important points about try block

	Syntax
	Syntax
	catch block
	catch block important points

	Example without Exception Handling
	Example
	Example of Exception Handling
	Example
	Output
	Multiple catch block

	Example
	Output
	finally Block in Exception Handling
	finally block important points

	Example
	Output
	Exception Classes in Java
	Checked Exception Classes
	Un-Checked Exception Classes
	FileNotFoundException
	ClassNotFoundException
	IOException
	InterruptedException
	ArithmeticException

	Example
	ArrayIndexOutOfBoundsException

	Example
	StringIndexOutOfBoundsException

	Example
	NumberFormateException

	Example
	Example
	NoSuchMethodException
	NullPointerException

	Example
	StackOverFlowException

	Difference Between Throw and Throws Keyword
	throw
	Syntax
	throws
	Example
	Difference between throw and throws
	Example of throw and throws

	Example
	Compile: javac -d . DivZero.java
	Example
	Compile: javac ArthException.java
	Steps to Compile and Run code

	Custom Exception in Java(user defined Exception)
	Rules to design user defined Exception

	Example
	Compile: javac -d . AgeException.java
	Example
	Compile: javac -d . CheckAge.java
	Example
	Compile: javac VerifyAgeException.java
	Steps to compile and run above program

	Multithreading in Java
	Thread
	State or Life cycle of thread
	New State
	Ready State
	Running State
	Halted or dead State
	Achieve multithreading in java
	Using thread class
	Example of multithreading using Thread class

	Thread class properties
	Constant data members
	MAX-PRIORITY
	MIN-PRIORITY
	NORM-PRIORITY
	Constructors of Thread class
	Thread()
	Thread(String name)
	Thread(object)
	object, String name
	Methods of Thread class
	getPriority()
	setPriority()
	getName()
	setName()
	isDeamon()
	run()
	start()
	sleep()
	suspend()
	resume()
	What is the difference between sleep() and suspend()

	stop()
	isAlive()
	currentThread()
	join()
	getState()
	yield()
	Using Runnable Interface
	Rules to create the thread using Runnable interface
	Thread Synchronization
	Synchronized block
	Synchronized method
	Interthread Communication
	Interthread communication methods
	public final void wait(long msec)
	public final void wait()
	public final void notify()
	public final void notifyAll()
	StringTokenizer in Java
	Example
	Methods of StringTokenizer
	hasMoreTokens()
	nextToken()
	Example of StringTokenizer:

	Output
	Java Scanner Class in Java
	Constructor of Scanner Class is Scanner(InputStream)
	Syntax of Scanner Class in Java
	Instance methods of Scanner Class
	For Remember all above methods
	Accept two values dynamically from the keyboard and compute sum.

	Example of Scanner Class in Java
	Output
	Program which is accept two number as a string and compute their sum.

	Example
	Output
	Applet in Java
	Advantage of Applet
	Life cycle of applet
	Design applet program
	Syntax
	Running of applet programs
	Running of applet using html
	Syntax
	Example of applet program to run applet using html

	Java code, JavaApp.java
	Html code, myapplet.html
	Running of applet using appletviewer
	Example of Applet
	Execution of applet program

